fixed bugs
This commit is contained in:
parent
62fc7f892d
commit
888b670668
1 changed files with 5 additions and 5 deletions
|
@ -246,7 +246,7 @@ we need the following theorem, which we won't prove here:
|
|||
we get from the above that
|
||||
\[
|
||||
\bE[X_T] \overset{n \ge M}{=} \bE[X^T_n] \begin{cases}
|
||||
\le \bE[X_0] & \text{ supermartingale},
|
||||
\le \bE[X_0] & \text{ supermartingale},\\
|
||||
= \bE[X_0] & \text{ martingale}.
|
||||
\end{cases}
|
||||
\]
|
||||
|
@ -269,7 +269,7 @@ we need the following theorem, which we won't prove here:
|
|||
taking values in $\N$.
|
||||
|
||||
If one of the following holds
|
||||
\begin{itemize}[(i)]
|
||||
\begin{enumerate}[(i)]
|
||||
\item $T \le M$ is bounded,
|
||||
\item $(X_n)_n$ is uniformly bounded
|
||||
and $T < \infty$ a.s.,
|
||||
|
@ -277,7 +277,7 @@ we need the following theorem, which we won't prove here:
|
|||
and $|X_n(\omega) - X_{n-1}(\omega)| \le K$
|
||||
for all $n \in \N, \omega \in \Omega$ and
|
||||
some $K > 0$,
|
||||
\end{itemize}
|
||||
\end{enumerate}
|
||||
then $\bE[X_T] \le \bE[X_0]$.
|
||||
|
||||
If $(X_n)_n$ even is a martingale, then
|
||||
|
|
Loading…
Reference in a new issue