fixed typo
This commit is contained in:
parent
0e6e7ad0e3
commit
594d933beb
1 changed files with 5 additions and 4 deletions
|
@ -77,16 +77,17 @@ from the lecture on stochastic.
|
|||
$X_n \xrightarrow{\text{a.s.}} X \implies X_n \xrightarrow{\bP} X$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
$\Omega_0 \coloneqq
|
||||
Let $\Omega_0 \coloneqq
|
||||
\{\omega \in \Omega : \lim_{n\to \infty} X_n(\omega) = X(\omega)\}$.
|
||||
Let $\epsilon > 0$ and consider
|
||||
Fix some $\epsilon > 0$ and consider
|
||||
$A_n \coloneqq \bigcup_{m \ge n}
|
||||
\{\omega \in \Omega: |X_m(\omega) - X(\omega)| > \epsilon\}$.
|
||||
Then $A_n \supseteq A_{n+1} \supseteq \ldots$
|
||||
Define $A \coloneqq \bigcap_{n \in \N} A_n$.
|
||||
Then $\bP[A_n] \xrightarrow{n\to \infty} \bP[A]$.
|
||||
Since $X_n \xrightarrow{a.s.} X$ we have that
|
||||
$\forall \omega \in \Omega_0 \exists n \in \N \forall m \ge n |X_m(\omega) - X(\omega)| < \epsilon$.
|
||||
\[\forall \omega \in \Omega_0 .~ \exists n \in \N .~
|
||||
\forall m \ge n.~ |X_m(\omega) - X(\omega)| < \epsilon.\]
|
||||
We have $A \subseteq \Omega_0^{c}$, hence $\bP[A_n] \to 0$.
|
||||
Thus \[
|
||||
\bP[\{\omega \in \Omega | ~|X_n(\omega) - X(\omega)| > \epsilon\}] < \bP[A_n] \to 0.
|
||||
|
@ -114,7 +115,7 @@ from the lecture on stochastic.
|
|||
Then for every $\epsilon > 0$
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\bP[|X_n - X| \ge \epsilon]
|
||||
&\overset{\text{Markov}}{\ge}& \frac{\bE[|X_n - X|]}{\epsilon}\\
|
||||
&\overset{\text{Markov}}{\le}& \frac{\bE[|X_n - X|]}{\epsilon}\\
|
||||
&\xrightarrow{n \to \infty} & 0,
|
||||
\end{IEEEeqnarray*}
|
||||
hence $X_n \xrightarrow{\bP} X$.
|
||||
|
|
Loading…
Reference in a new issue