From 4e3c50102297069f420838cfdfe814c486482666 Mon Sep 17 00:00:00 2001 From: Josia Pietsch Date: Tue, 11 Jul 2023 23:37:14 +0200 Subject: [PATCH] more details on example from lecture 05 --- inputs/lecture_05.tex | 33 +++++++++++++++++++++++++++------ 1 file changed, 27 insertions(+), 6 deletions(-) diff --git a/inputs/lecture_05.tex b/inputs/lecture_05.tex index 76fc1ef..e927114 100644 --- a/inputs/lecture_05.tex +++ b/inputs/lecture_05.tex @@ -26,18 +26,26 @@ We fix a probability space $(\Omega, \cF, \bP)$ once and for all. \begin{enumerate}[(a)] \item Given $\epsilon > 0$, we need to show that \[ - \bP\left[ \left| \frac{X_1 + \ldots + X_n}{n}\right| > \epsilon\right] \to 0 \] - as $n \to 0$. + \bP\left[ + \left| \frac{X_1 + \ldots + X_n}{n} - m\right| > \epsilon + \right] \xrightarrow{n \to 0} 0. + \] Let $S_n \coloneqq X_1 + \ldots + X_n$. Then $\bE[S_n] = \bE[X_1] + \ldots + \bE[X_n] = nm$. We have \begin{IEEEeqnarray*}{rCl} - \bP\left[ \left| \frac{X_1 + \ldots + X_n}{n}\right| > \epsilon\right] &=& \bP\left[\left|\frac{S_n}{n}-m\right| > \epsilon\right]\\ - &\overset{\text{Chebyshev}}{\le }& \frac{\Var\left( \frac{S_n}{n} \right) }{\epsilon^2} = \frac{1}{n} \frac{\Var(X_1)}{\epsilon^2} \xrightarrow{n \to \infty} 0 + \bP\left[ \left| \frac{X_1 + \ldots + X_n}{n} - m\right| > \epsilon\right] + &=& \bP\left[\left|\frac{S_n}{n}-m\right| > \epsilon\right]\\ + &\overset{\text{Chebyshev}}{\le }& + \frac{\Var\left( \frac{S_n}{n} \right) }{\epsilon^2} + = \frac{1}{n} \frac{\Var(X_1)}{\epsilon^2} + \xrightarrow{n \to \infty} 0 \end{IEEEeqnarray*} since - \[\Var(\frac{S_n}{n}) = \frac{1}{n^2} \Var(S_n) = \frac{1}{n^2} n \Var(X_i).\] + \[\Var\left(\frac{S_n}{n}\right) + = \frac{1}{n^2} \Var\left(S_n\right) + = \frac{1}{n^2} n \Var(X_i).\] \end{enumerate} \end{refproof} For the proof of (b) we need the following general result: @@ -54,4 +62,17 @@ We'll prove this later\todo{Move proof} Does the converse hold? I.e.~does $\sum_{n \ge 1} X_n < \infty$ a.s.~ then $\sum_{n \ge 1} \Var(X_n) < \infty$. \end{question} -This does not hold. Consider for example $X_n = \frac{1}{n^2} \delta_n + \frac{1}{n^2} \delta_{-n} + (1-\frac{2}{n^2}) \delta_0$. +This does not hold. +Consider the following: +\begin{example} + Let $X_1,X_2,\ldots$ be independent random variables, + where $X_n$ has distribution + $\frac{1}{n^2} \delta_n + \frac{1}{n^2} \delta_{-n} + (1-\frac{2}{n^2}) \delta_0$. + We have $\bP[X_n \neq 0] = \frac{2}{n^2}$. + Since this is summable, Borel-Cantelli yields + \[ + \bP[X_{n} \neq 0 \text{ for infinitely many $n$}] = 0. + \] + In particular, $X_n$ is summable almost surely. + However $\Var(X_n) = 2$ is not summable. +\end{example}