09 typos
This commit is contained in:
parent
b17cc4df38
commit
369308a9f8
1 changed files with 4 additions and 2 deletions
|
@ -113,9 +113,11 @@ We have
|
||||||
$X: (\Omega, \cF) \to (\R, \cB(\R))$ is a random variable.
|
$X: (\Omega, \cF) \to (\R, \cB(\R))$ is a random variable.
|
||||||
Then we can define
|
Then we can define
|
||||||
\[
|
\[
|
||||||
\phi_X(t) \coloneqq \bE[e^{\i t x}] = \int e^{\i t X(\omega)} \bP(d \omega) = \int_{\R} e^{\i t x} \mu(dx) = \phi_\mu(t)
|
\phi_X(t) \coloneqq \bE[e^{\i t x}]
|
||||||
|
= \int e^{\i t X(\omega)} \bP(\dif \omega)
|
||||||
|
= \int_{\R} e^{\i t x} \mu(dx) = \phi_\mu(t),
|
||||||
\]
|
\]
|
||||||
where $\mu = \bP x^{-1}$.
|
where $\mu = \bP \circ X^{-1}$.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
|
|
||||||
\begin{theorem}[Inversion formula] % thm1
|
\begin{theorem}[Inversion formula] % thm1
|
||||||
|
|
Loading…
Reference in a new issue