From 2b34e3b5fbfaa3db283a060dbb7a772b327e1416 Mon Sep 17 00:00:00 2001 From: Josia Pietsch Date: Wed, 12 Jul 2023 16:39:58 +0200 Subject: [PATCH] fixed typo --- inputs/lecture_10.tex | 25 +++++++++++++------------ 1 file changed, 13 insertions(+), 12 deletions(-) diff --git a/inputs/lecture_10.tex b/inputs/lecture_10.tex index 1ffaadd..0ec6a3d 100644 --- a/inputs/lecture_10.tex +++ b/inputs/lecture_10.tex @@ -61,24 +61,24 @@ where $\mu = \bP X^{-1}$. \begin{theorem} % Theorem 3 \label{thm:lec10_3} - Let $\bP \in M_1(\R)$ such that $\phi_\R \in L^1(\lambda)$. + Let $\bP \in M_1(\R)$ such that $\phi_\bP \in L^1(\lambda)$. Then $\bP$ has a continuous probability density given by \[ - f(x) = \frac{1}{2 \pi} \int_{\R} e^{-\i t x} \phi_{\R}(t) \dif t. + f(x) = \frac{1}{2 \pi} \int_{\R} e^{-\i t x} \phi_{\bP}(t) \dif t. \] \end{theorem} \begin{example} \begin{itemize} - \item Let $\bP = \delta_{\{0\}}$. + \item Let $\bP = \delta_{0}$. Then \[ - \phi_{\R}(t) = \int e^{\i t x} d \delta_0(x) = e^{\i t 0 } = 1 + \phi_{\bP}(t) = \int e^{\i t x} \dif \delta_0(x) = e^{\i t 0 } = 1 \] \item Let $\bP = \frac{1}{2} \delta_1 + \frac{1}{2} \delta_{-1}$. Then \[ - \phi_{\R}(t) = \frac{1}{2} e^{\i t} + \frac{1}{2} e^{- \i t} = \cos(t) + \phi_{\bP}(t) = \frac{1}{2} e^{\i t} + \frac{1}{2} e^{- \i t} = \cos(t) \] \end{itemize} \end{example} @@ -88,20 +88,21 @@ where $\mu = \bP X^{-1}$. If $x_n \to x$, then $f(x_n) \to f(x)$. \end{claim} \begin{subproof} - If $e^{-\i t x_n} \phi(t) \xrightarrow{n \to \infty} e^{-\i t x } \phi(t) $ for all $t$. - - Then + Suppose that + $e^{-\i t x_n} \phi(t) \xrightarrow{n \to \infty} e^{-\i t x} \phi(t)$ + for all $t$. + Since \[ |e^{-\i t x} \phi(t)| \le |\phi(t)| \] - and $\phi \in L^1$, hence $f(x_n) \to f(x)$ + and $\phi \in L^1$, + we get $f(x_n) \to f(x)$ by the dominated convergence theorem. - \end{subproof} We'll show that for all $a < b$ we have \[ - \bP\left( (a,b] \right) = \int_a^b (x) \dif x.\label{thm10_3eq1} + \bP\left( (a,b] \right) = \int_a^b f(x) \dif x.\label{thm10_3eq1} \] Let $F$ be the distribution function of $\bP$. It is enough to prove \autoref{thm10_3eq1} @@ -153,7 +154,7 @@ However, Fourier analysis is not only useful for continuous probability density Let $\phi$ be the characteristic function of $\bP \in M_1(\lambda)$. Then \begin{enumerate}[(a)] - \item $\phi(0) = 1$, $|\phi(t)| \le t$ and $\phi(\cdot )$ is continuous. + \item $\phi(0) = 1$, $|\phi(1)| \le t$ and $\phi(\cdot )$ is continuous. \item $\phi$ is a \vocab{positive definite function}, i.e.~ \[\forall t_1,\ldots, t_n \in \R, (c_1,\ldots,c_n) \in \C^n ~ \sum_{j,k = 1}^n c_j \overline{c_k} \phi(t_j - t_k) \ge 0