moved role of independence
This commit is contained in:
parent
f775ff03c3
commit
2399a418aa
4 changed files with 25 additions and 39 deletions
|
@ -219,22 +219,28 @@ Assume $Y = \One_B$, then $Y$ simple, then take the limit (using that $Y$ is bou
|
|||
\begin{definition}
|
||||
Let $\cG$ and $\cH$ be $\sigma$-algebras.
|
||||
We call $\cG$ and $\cH$ \vocab[$\sigma$-algebra!independent]{independent},
|
||||
if % TODO
|
||||
\todo{TODO}
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}[Role of independence]
|
||||
\label{ceprop12}
|
||||
\label{roleofindependence}
|
||||
If $\cH$ is a sub-$\sigma$-algebra of $\cF$ and $\cH$ is independent
|
||||
of $\sigma(\sigma(X), \cG)$, then
|
||||
\[
|
||||
\bE[X | \sigma(\cG, \cH)] \overset{\text{a.s.}}{=} \bE[X | \cG].
|
||||
\]
|
||||
\label{ceroleofindependence}
|
||||
Let $X$ be a random variable,
|
||||
and let $\cG, \cH$ be $\sigma$-algebras.
|
||||
|
||||
If $\cH$ is independent of $\sigma\left( \sigma(X), \cG \right)$,
|
||||
then
|
||||
\[
|
||||
\bE[X | \sigma(\cG, \cH)] \overset{\text{a.s.}}{=} \bE[X | \cG].
|
||||
\]
|
||||
|
||||
In particular, if $X$ is independent of $\cG$,
|
||||
then
|
||||
\[
|
||||
\bE[X | \cG] \overset{\text{a.s.}}{=} \bE[X].
|
||||
\]
|
||||
\end{theorem}
|
||||
\begin{example}
|
||||
If $X$ is independent of $\cG$,
|
||||
then $\bE[X | \cG] \overset{\text{a.s.}}{=} \bE[X]$.
|
||||
\end{example}
|
||||
|
||||
\begin{example}[Martingale property of the simple random walk]
|
||||
Suppose $X_1,X_2,\ldots$ are i.i.d.~with $\bP[X_i = 1] = \bP[X_i = -1] = \frac{1}{2}$.
|
||||
Let $S_n \coloneqq \sum_{i=1}^n X_i$ be the \vocab{simple random walk}.
|
||||
|
|
|
@ -1,29 +1,8 @@
|
|||
\lecture{16}{2023-06-13}{}
|
||||
|
||||
\subsection{Conditional expectation}
|
||||
% \subsection{Conditional expectation}
|
||||
|
||||
\begin{theorem}
|
||||
\label{ceprop11}
|
||||
\label{ceroleofindependence}
|
||||
Let $X$ be a random variable,
|
||||
and let $\cG, \cH$ be $\sigma$-algebras.
|
||||
|
||||
If $\cH$ is independent of $\sigma\left( \sigma(X), \cG \right)$,
|
||||
then
|
||||
\[
|
||||
\bE[X | \sigma(\cG, \cH)] \overset{\text{a.s.}}{=} \bE[X | \cG].
|
||||
\]
|
||||
|
||||
In particular, if $X$ is independent of $\cG$,
|
||||
then
|
||||
\[
|
||||
\bE[X | \cG] \overset{\text{a.s.}}{=} \bE[X].
|
||||
\]
|
||||
\end{theorem}
|
||||
|
||||
\todo{Definition of independence wrt a $\sigma$-algebra}
|
||||
|
||||
\begin{proof}
|
||||
\begin{refproof}{ceroleofindependence}
|
||||
Let $\cH$ be independent of $\sigma(\sigma(X), \cG)$.
|
||||
Then for all $H \in \cH$, we have that $\One_H$
|
||||
and any random variable measurable with respect to either $\sigma(X)$
|
||||
|
@ -50,7 +29,7 @@
|
|||
The claim of the theorem follows by the uniqueness of conditional expectation.
|
||||
|
||||
To deduce the second statement, choose $\cG = \{\emptyset, \Omega\}$.
|
||||
\end{proof}
|
||||
\end{refproof}
|
||||
|
||||
|
||||
\subsection{The Radon Nikodym theorem}
|
||||
|
|
|
@ -1,7 +1,9 @@
|
|||
\lecture{17}{2023-06-15}{}
|
||||
|
||||
\begin{definition}[Stochastic process]
|
||||
% TODO
|
||||
A \vocab{stochastic process} is a collection of random
|
||||
variables $(X_t)_{t \in T}$ for some index set $T$.
|
||||
In this lecture we will consider the case $T = \N$.
|
||||
\end{definition}
|
||||
|
||||
\begin{goal}
|
||||
|
|
|
@ -61,7 +61,7 @@ However, some subsets can be easily described, e.g.
|
|||
|
||||
\begin{fact}\label{lec19f2}
|
||||
If $(X_n)_n$ is uniformly integrable,
|
||||
then $(X_n)_n$ is bounded in $L^1$.k:w
|
||||
then $(X_n)_n$ is bounded in $L^1$.
|
||||
\end{fact}
|
||||
|
||||
\begin{fact}\label{lec19f3}
|
||||
|
@ -223,7 +223,7 @@ Let $(\Omega, \cF, \bP)$ as always and let $(\cF_n)_n$ always be a filtration.
|
|||
to $X$ in $L^p$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
|
||||
\todo{TODO}
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}
|
||||
|
@ -231,7 +231,6 @@ Let $(\Omega, \cF, \bP)$ as always and let $(\cF_n)_n$ always be a filtration.
|
|||
Let $(X_n)_n$ be a martingale bounded in $L^p$.
|
||||
Then there exists a random variable $X \in L^p$, such that
|
||||
$X_n = \bE[X | \cF_n]$ for all $n$.
|
||||
|
||||
\end{theorem}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue