2023-05-10 18:56:36 +02:00
% lecture 10 - 2023-05-09
% RECAP
First, we will prove some of the most important facts about Fourier transforms.
We consider $ ( \R , \cB ( \R ) ) $ .
\begin { notation}
By $ M _ 1 ( \R ) $ we denote the set of all probability measures on $ \left ( \R , \cB ( \R ) \right ) $ .
\end { notation}
For all $ \bP \in M _ 1 ( \R ) $ we define $ \phi _ { \bP } ( t ) = \int _ { \R } e ^ { \i t x } d \bP ( x ) $ .
If $ X: ( \Omega , \cF ) \to ( \R , \cB ( \R ) ) $ is a random variable, we write
$ \phi _ X ( t ) \coloneqq \bE [ e ^ { \i t X } ] = \phi _ { \mu } ( t ) $ ,
where $ \mu = \bP X ^ { - 1 } $ .
\begin { refproof} { inversionformula}
We will prove that the limit in the RHS of \autoref { invf}
exists and is equal to the LHS.
Note that the term on the RHS is integrable, as
\[
\lim _ { t \to 0} \frac { e^ { -\i t b} - e^ { -\i t a} } { - \i t} \pi (t) = a - b
\]
and note that $ \phi ( 0 ) = 1 $ and $ | \phi ( t ) | \le 1 $ .
% TODO think about this
We have
\begin { IEEEeqnarray*} { rCl}
2023-05-11 23:55:51 +02:00
& & \lim _ { T \to \infty } \frac { 1} { 2 \pi } \int _ { -T} ^ T \int _ { \R } \frac { e^ { -\i t b} - e^ { -\i t a} } { -\i t} e^ { \i t x} dt d \bP (x)\\
& \overset { \text { Fubini for $ L ^ 1 $ } } { =} & \lim _ { T \to \infty } \frac { 1} { 2 \pi } \int _ { \R } \int _ { -T} ^ T \frac { e^ { -\i t b} - e^ { -\i t a} } { -\i t} e^ { \i t x} dt d \bP (x)\\
& =& \lim _ { T \to \infty } \frac { 1} { 2 \pi } \int _ { \R } \int _ { -T} ^ T \frac { e^ { \i t (b-x)} - e^ { \i t (x-a)} } { -\i t} dt d \bP (x)\\
& =& \lim _ { T \to \infty } \frac { 1} { 2 \pi } \int _ { \R } \underbrace { \int _ { -T} ^ T \left [ \frac{\cos(t (x-b)) - \cos(t(x-a))}{-\i t}\right] dt d \bP (x)} _ { =0 \text { , as the function is odd} }
2023-05-10 18:56:36 +02:00
\\ & &
+ \lim _ { T \to \infty } \frac { 1} { 2\pi } \int _ { \R } \int _ { -T} ^ T \frac { \sin (t ( x - b)) - \sin (t(x-a))} { -t} dt d\bP (x)\\
& =& \lim _ { T \to \infty } \frac { 1} { \pi } \int _ \R \int _ { 0} ^ T \frac { \sin (t(x-a)) - \sin (t(x-b))} { t} dt d\bP (x)\\
& \overset { \text { \autoref { fact:intsinxx} , dominated convergence} } { =} & \frac { 1} { \pi } \int -\frac { \pi } { 2} \One _ { x < a} + \frac { \pi } { 2} \One _ { x > a }
- (- \frac { \pi } { 2} \One _ { x < b} + \frac { \pi } { 2} \One _ { x > b} ) d\bP (x)\\
& =& \frac { 1} { 2} \bP (\{ a\} ) + \frac { 1} { 2} \bP (\{ b\} ) + \bP ((a,b))\\
& =& \frac { F(b) + F(b-)} { 2} - \frac { F(a) - F(a-)} { 2}
\end { IEEEeqnarray*}
\end { refproof}
\begin { fact}
\label { fact:intsinxx}
\[
\int _ 0^ \infty \frac { \sin x} { x} dx = \frac { \pi } { 2}
\]
where the LHS is an improper Riemann-integral.
Note that the LHS is not Lebesgue-integrable.
It follows that
\begin { IEEEeqnarray*} { rCl}
\lim _ { T \to \infty } \int _ 0^ T \frac { \sin (t(x-a))} { x} dt & =&
\begin { cases}
- \frac { \pi } { 2} , & x < a,\\
0, & x = a,\\
\frac { \pi } { 2} , & \frac { \pi } { 2}
\end { cases}
\end { IEEEeqnarray*}
\end { fact}
\begin { theorem} % Theorem 3
\label { thm:lec10_ 3}
Let $ \bP \in M _ 1 ( \R ) $ such that $ \phi _ \R \in L ^ 1 ( \lambda ) $ .
Then $ \bP $ has a continuous probability density given by
\[
f(x) = \frac { 1} { 2 \pi } \int _ { \R } e^ { -\i t x} \phi _ { \R (t) dt} .
\]
\end { theorem}
\begin { example}
\begin { itemize}
\item Let $ \bP = \delta _ { \{ 0 \} } $ .
Then
\[
\phi _ { \R } (t) = \int e^ { \i t x} d \delta _ 0(x) = e^ { \i t 0 } = 1
\]
\item Let $ \bP = \frac { 1 } { 2 } \delta _ 1 + \frac { 1 } { 2 } \delta _ { - 1 } $ .
Then
\[
\phi _ { \R } (t) = \frac { 1} { 2} e^ { \i t} + \frac { 1} { 2} e^ { - \i t} = \cos (t)
\]
\end { itemize}
\end { example}
\begin { refproof} { thm:lec10_ 3}
Let $ f ( x ) \coloneqq \frac { 1 } { 2 \pi } \int _ { \R } e ^ { - \i t x } \phi ( t ) dt $ .
\begin { claim}
If $ x _ n \to x $ , then $ f ( x _ n ) \to f ( x ) $ .
\end { claim}
\begin { subproof}
If $ e ^ { - \i t x _ n } \phi ( t ) \xrightarrow { n \to \infty } e ^ { - \i t x } \phi ( t ) $ for all $ t $ .
Then
\[
|e^ { -\i t x} \phi (t)| \le |\phi (t)|
\]
and $ \phi \in L ^ 1 $ , hence $ f ( x _ n ) \to f ( x ) $
by the dominated convergence theorem.
\end { subproof}
We'll show that for all $ a < b $ we have
\[
\bP \left ( (a,b] \right ) = \int _ a^ b (x) dx.\label { thm10_ 3eq1}
\]
Let $ F $ be the distribution function of $ \bP $ .
It is enough to prove \autoref { thm10_ 3eq1}
for all continuity points $ a $ and $ b $ of $ F $ .
We have
\begin { IEEEeqnarray*} { rCl}
RHS & \overset { \text { Fubini} } { =} & \frac { 1} { 2 \pi } \int _ { \R } \int _ { a} ^ b e^ { -\i t x} \phi (t) dx dt\\
& =& \frac { 1} { 2 \pi } \int _ \R \phi (t) \int _ a^ b e^ { -\i t x} dx dt\\
& =& \frac { 1} { 2\pi } \int _ { \R } \phi (t) \left ( \frac { e^ { -\i t b} - e^ { -\i t a} } { - \i t} \right ) dt\\
& \overset { \text { dominated convergence} } { =} & \lim _ { T \to \infty } \frac { 1} { 2\pi } \int _ { -T} ^ { T} \phi (t) \left ( \frac { e^ { -\i t b} - e^ { - \i t a} } { - \i t} \right ) dt
\end { IEEEeqnarray*}
By \autoref { inversionformula} , the RHS is equal to $ F ( b ) - F ( a ) = \bP \left ( ( a,b ] \right ) $ .
\end { refproof}
However, Fourier analysis is not only useful for continuous probability density functions:
\begin { theorem} [Bochner's formula for the mass at a point]\label { bochnersformula} % Theorem 4
Let $ \bP \in M _ 1 ( \lambda ) $ .
Then
\[
\forall x \in \R ~ \bP \left ( \{ x\} \right ) = \lim _ { T \to \infty } \frac { 1} { 2 T} \int _ { -T} ^ T e^ { -\i t x } \phi (t) dt.
\]
\end { theorem}
\begin { refproof} { bochnersformula}
We have
\begin { IEEEeqnarray*} { rCl}
RHS & =& \lim _ { T \to \infty } \frac { 1} { 2 T} \int _ { -T} ^ T e^ { -\i t x} \int _ { \R } e^ { \i t y} d \bP (y) \\
& \overset { \text { Fubini} } { =} & \lim _ { T \to \infty } \frac { 1} { 2 T} \int _ \R \bP (dy) \int _ { -T} ^ T \underbrace { e^ { -\i t (y - x)} } _ { \cos (t ( y - x)) + \i \sin (t (y-x))} dt\\
& =& \lim _ { T \to \infty } \frac { 1} { 2T} \int _ { \R } d\bP (y) \int _ { -T} ^ T \cos (t(y - x)) dt\\
& =& \lim _ { T \to \infty } \frac { 1} { 2 T } \int _ { \R } \frac { 2 \sin (T (y-x)} { T (y-x)} d \bP (y)\\
\end { IEEEeqnarray*}
Furthermore
\[
\lim _ { T \to \infty } \frac { \sin (T(x-y)} { T (y- x)} = \begin { cases}
1, & y = x,\\
0, & y \neq x.
\end { cases}
\]
Hence
\begin { IEEEeqnarray*} { rCl}
\lim _ { T \to \infty } \frac { 1} { 2 T } \int _ { \R } \frac { 2 \sin (T (y-x)} { T (y-x)} d \bP (y) & =& \bP \left ( \{ x\} \right )
\end { IEEEeqnarray*}
% TODO by dominated convergence?
\end { refproof}
\begin { theorem} % Theorem 5
\label { thm:lec_ 10thm5}
Let $ \phi $ be the characteristic function of $ \bP \in M _ 1 ( \lambda ) $ .
Then
\begin { enumerate} [(a)]
\item $ \phi ( 0 ) = 1 $ , $ | \phi ( t ) | \le t $ and $ \phi ( \cdot ) $ is continuous.
\item $ \phi $ is a \vocab { positive definite function} ,
i.e.~
\[ \forall t _ 1 , \ldots , t _ n \in \R , ( c _ 1 , \ldots ,c _ n ) \in \C ^ n ~ \sum _ { j,k = 1 } ^ n c _ j \overline { c _ k } \phi ( t _ j - t _ k ) \ge 0
\]
(equivalently, the matix $ ( \phi ( t _ j - t _ k ) ) _ { j,k } $ is positive definite.
\end { enumerate}
\end { theorem}
\begin { refproof} { thm:lec_ 10thm5}
Part (a) is obvious.
% TODO
For part (b) we have:
\begin { IEEEeqnarray*} { rCl}
\sum _ { j,k} c_ j \overline { c_ k} \phi (t_ j - t_ k) & =& \sum _ { j,k} c_ j \overline { c_ k} \int _ \R e^ { \i (t_ j - t_ k) x} d \bP (x)\\
& =& \int _ { \R } \sum _ { j,k} c_ j \overline { c_ k} e^ { \i t_ j x} \overline { e^ { \i t_ k x} } d\bP (x)\\
& =& \int _ { \R } \sum _ { j,k} c_ j e^ { \i t_ j x} \overline { c_ k e^ { \i t_ k x} } d\bP (x)\\
& =& \int _ { \R } \left | \sum _ { l} c_ l e^ { \i t_ l x} \right |^ 2 \ge 0
\end { IEEEeqnarray*}
\end { refproof}
\begin { theorem} [Bochner's theorem]\label { bochnersthm}
2023-05-11 17:51:08 +02:00
The converse to \autoref { thm:lec_ 10thm5} holds, i.e.~ any
$ \phi : \R \to \C $ satisfying (a) and (b) of \autoref { thm:lec_ 10thm5}
2023-05-10 18:56:36 +02:00
must be the Fourier transform of a probability measure $ \bP $
on $ ( \R , \cB ( \R ) ) $ .
\end { theorem}
Unfortunately, we won't prove \autoref { bochnersthm} in this lecture.
\begin { definition} [Convergence in distribution / weak convergence]
We say that $ \bP _ n \subseteq M _ 1 ( \R ) $ \vocab [Convergence!weak] { converges weakly} towards $ \bP \in M _ 1 ( \R ) $ (notation: $ \bP _ n \implies \bP $ ), iff
\[
\forall f \in C_ b(\R )~ \int f d\bP _ n \to \int f d\bP .
\]
Where
\[
C_ b(\R ) \coloneqq \{ f: \R \to \R \text { continuous and bounded} \}
\]
In analysis, this is also known as $ \text { weak } ^ \ast $ convergence.
\end { definition}
\begin { remark}
This notion of convergence makes $ M _ 1 ( \R ) $ a separable metric space. We can construc a metric on $ M _ 1 ( \R ) $ that turns $ M _ 1 ( \R ) $ into a complete
and separable metric space:
Consider the sets
\[
\{ \bP \in M_ 1(\R ): \forall i=1,\ldots ,n ~ \int f d \bP - \int f_ i d\bP < \epsilon \}
\]
for any $ f,f _ 1 , \ldots , f _ n \in C _ b ( \R ) $ .
These sets form a basis for the topology on $ M _ 1 ( \R ) $ .
More of this will follow later.
\end { remark}
\begin { example}
\begin { itemize}
\item Let $ \bP _ n = \delta _ { \frac { 1 } { n } } $ .
Then $ \int f d \bP _ n = f ( \frac { 1 } { n } ) \to f ( 0 ) = \int f d \delta _ 0 $
for any continuous, bounded function $ f $ .
Hence $ \bP _ n \to \delta _ 0 $ .
\item $ \bP _ n \coloneqq \delta _ n $ does not converge weakly,
as for example
\[
\int \cos (\pi x) d\bP _ n(x)
\]
does not converge.
\item $ \bP _ n \coloneqq \frac { 1 } { n } \delta _ n + ( 1 - \frac { 1 } { n } ) \delta _ 0 $ .
Let $ f \in C _ b ( \R ) $ arbitrary.
Then
\[
\int f d\bP _ n = \frac { 1} { n} (n) + (1 - \frac { 1} { n} ) f(0) \to f(0)
\]
since $ f $ is bounded.
Hence $ \bP _ n \implies \delta _ 0 $ .
\item $ \bP _ n \coloneqq \frac { 1 } { \sqrt { 2 \pi n } } e ^ { - \frac { x ^ 2 } { 2 n } } $ .
This ``converges'' towards the $ 0 $ -measure, which is not a probability measure. Hence $ \bP _ n $ does not converge weakly.
(Exercise) % TODO
\end { itemize}
\end { example}
\begin { definition}
We say that a series of random variables $ X _ n $
\vocab [Convergence!in distribution] { converges in distribution}
to $ X $ (notation: $ X _ n \xrightarrow { \text { dist } } X $ ), iff
$ \bP _ n \implies \bP $ , where $ \bP _ n $ is the distribution of $ X _ n $
and $ \bP $ is the distribution of $ X $ .
\end { definition}
\begin { example}
Let $ X _ n \coloneqq \frac { 1 } { n } $
and $ F _ n $ the distribution function, i.e.~$ F _ n = \One _ { [ \frac { 1 } { n } , \infty ) } $ .
Then $ \bP _ n = \delta _ { \frac { 1 } { n } } \implies \delta _ 0 $
which is the distribution of $ X \equiv 0 $ .
But $ F _ n ( 0 ) \centernot \to F ( 0 ) $ .
\end { example}
\begin { theorem}
$ X _ n \xrightarrow { \text { dist } } X $ iff
$ F _ n ( t ) \to F ( t ) $ for all continuity points $ t $ of $ F $ .
\end { theorem}
\begin { theorem} [Levy's continuity theorem]\label { levycontinuity}
$ X _ n \xrightarrow { \text { dist } } X $ iff
$ \phi _ { X _ n } ( t ) \to \phi ( t ) $ for all $ t \in \R $ .
\end { theorem}
We will assume these two theorems for now and derive the central limit theorem.
The theorems will be proved later.