256 lines
7.3 KiB
TeX
256 lines
7.3 KiB
TeX
|
\lecture{14}{2023-06-06}{}
|
||
|
|
||
|
We want to derive some properties of conditional expectation.
|
||
|
|
||
|
\begin{theorem}[Law of total expectation] % Thm 1
|
||
|
\label{ceprop1}
|
||
|
\label{totalexpectation}
|
||
|
\[
|
||
|
\bE[\bE[X | \cG ]] = \bE[X].
|
||
|
\]
|
||
|
\end{theorem}
|
||
|
\begin{proof}
|
||
|
Apply (b) from the definition for $G = \Omega \in \cG$.
|
||
|
\end{proof}
|
||
|
\begin{theorem} % Thm 2
|
||
|
\label{ceprop2}
|
||
|
If $X$ is $\cG$-measurable, then $X = \bE[X | \cG]$ a.s..
|
||
|
\end{theorem}
|
||
|
\begin{proof}
|
||
|
Suppose $\bP[X \neq Y] > 0$.
|
||
|
Without loss of generality $\bP[X > Y] > 0$.
|
||
|
Hence $\bP[ X > Y + \frac{1}{n}]> 0$ for some $n \in \N$.
|
||
|
Let $A \coloneqq \{X > Y + \frac{1}{n}\}$.
|
||
|
% TODO
|
||
|
\end{proof}
|
||
|
|
||
|
\begin{example}
|
||
|
Suppose $X \in L^1(\bP)$, $\cG \coloneqq \sigma(X)$.
|
||
|
Then $X$ is measurable with respect to $\cG$.
|
||
|
Hence $\bE[X | \cG] = X$.
|
||
|
\end{example}
|
||
|
|
||
|
\begin{theorem}[Linearity]
|
||
|
\label{ceprop3}
|
||
|
\label{celinearity}
|
||
|
For all $a,b \in \R$
|
||
|
we have
|
||
|
\[
|
||
|
\bE[a X_1 + bX_2 | \cG] = a \bE[X_1 | \cG] + b \bE[X_2|\cG].
|
||
|
\]
|
||
|
\end{theorem}
|
||
|
\begin{proof}
|
||
|
Trivial % TODO
|
||
|
\end{proof}
|
||
|
|
||
|
\begin{theorem}[Positivity]
|
||
|
\label{ceprop4}
|
||
|
% 4
|
||
|
\label{cpositivity}
|
||
|
If $X \ge 0$, then $\bE[X | \cG] \ge 0$ a.s.
|
||
|
\end{theorem}
|
||
|
\begin{proof}
|
||
|
Let $W $ be a version of $\E[X | \cG]$.
|
||
|
Suppose $\bP[ W < 0] > 0$.
|
||
|
Then $G \coloneqq \{W < -\frac{1}{n}\} \in \cG$
|
||
|
For some $n \in \N$, we have $\bP[G] > 0$.
|
||
|
However it follows that
|
||
|
\[
|
||
|
\int_G \bP[X | \cG] \dif \bP \le -\frac{1}{n} \bP[G] < 0 \le \int_G X \dif \bP.
|
||
|
\]
|
||
|
\end{proof}
|
||
|
\begin{theorem}[Conditional monotone convergence theorem]
|
||
|
\label{ceprop5}
|
||
|
% 5
|
||
|
\label{mcmt}
|
||
|
Let $X_n,X \in L^1(\Omega, \cF, \bP)$.
|
||
|
Suppose $X_n \ge 0$ with $X_n \uparrow X$.
|
||
|
Then $\bE[X_n|\cG] \uparrow \bE[X|\cG]$.
|
||
|
|
||
|
\end{theorem}
|
||
|
\begin{proof}
|
||
|
Let $Z_n$ be a version of $\bE[X_n | Y]$.
|
||
|
Since $X_n \ge 0$ and $X_n \uparrow$,
|
||
|
by \autoref{cpositivity},
|
||
|
we have
|
||
|
\[
|
||
|
\bE[X_n | \cG] \overset{\text{a.s.}}{\ge } 0
|
||
|
\]
|
||
|
and
|
||
|
\[
|
||
|
\bE[X_n | \cG] \uparrow \text{a.s.}
|
||
|
\]
|
||
|
(consider $X_{n+1} - X_n$ ).
|
||
|
|
||
|
Define $Z \coloneqq \limsup_{n \to \infty} Z_n$.
|
||
|
Then $Z$ is $\cG$-measurable
|
||
|
and $Z_n \uparrow Z$ a.s.
|
||
|
|
||
|
Take some $G \in \cG$.
|
||
|
We know by (b) % TODO REF
|
||
|
that $\be[Z_n \One_G] = \bE[X_n \One_G]$.
|
||
|
The LHS increases to $\bE[Z \One_G]$ by the monotone
|
||
|
convergence theorem.
|
||
|
Again by MCT, $\bE[X_n \One_G]$ increases to
|
||
|
$\bE[X \One_G]$.
|
||
|
Hence $Z$ is a version of $\bE[X | \cG]$.
|
||
|
\end{proof}
|
||
|
|
||
|
\begin{theorem}[Conditional Fatou]
|
||
|
\label{ceprop6}
|
||
|
\label{cfatou}
|
||
|
Let $X_n \in L^1(\Omega, \cF, \bP)$, $X_n \ge 0$.
|
||
|
Then
|
||
|
\[
|
||
|
\bE[ \liminf_{n \to \infty} X_n | \cG] \le \liminf_{n \to \infty} \bE[X_n | \cG].
|
||
|
\]
|
||
|
\end{theorem}
|
||
|
\begin{proof}
|
||
|
\todo{in the notes}
|
||
|
\end{proof}
|
||
|
\begin{theorem}[Conditional dominated convergence theorem]
|
||
|
\label{ceprop7}
|
||
|
\label{cdct}
|
||
|
Let $X_n,X \in L^1(\Omega, \cF, \bP)$.
|
||
|
Suppose $|X_n(\omega)| < X(\omega)$ a.e.~
|
||
|
and $\int |X| \dif \bP < \infty$.
|
||
|
Then $X_n(\omega) \to X\left( \omega \right) \implies \bE[ X_n | \cG] \to \bE[X | \cG]$.
|
||
|
|
||
|
\end{theorem}
|
||
|
\begin{proof}
|
||
|
\todo{in the notes}
|
||
|
\end{proof}
|
||
|
|
||
|
Recall
|
||
|
\begin{theorem}[Jensen's inequality]
|
||
|
If $c : \R \to \R$ is convex and $\bE[|c \circ X|] < \infty$,
|
||
|
then $\bE[c \circ X] \ge c(\bE[X])$.
|
||
|
\end{theorem}
|
||
|
|
||
|
For conditional expectation, we have
|
||
|
\begin{theorem}[Conditional Jensen's inequality]
|
||
|
\label{ceprop8}
|
||
|
\label{cjensen}
|
||
|
Let $X \in L^1(\Omega, \cF, \bP)$.
|
||
|
If $c : \R \to \R$ is convex and $\bE[|c \circ X|] < \infty$,
|
||
|
then $\bE[c \circ X | \cG] \ge c(\bE[X | \cG])$ a.s.
|
||
|
\end{theorem}
|
||
|
\begin{fact}
|
||
|
\label{convapprox}
|
||
|
If $c$ is convex, then there are two sequences of real numbers
|
||
|
$a_n, b_n \in \R$
|
||
|
such that
|
||
|
\[
|
||
|
c(x) = \sup_n(a_n x + b_n).
|
||
|
\]
|
||
|
\end{fact}
|
||
|
\begin{refproof}{cjensen}
|
||
|
By \autoref{convapprox}, $c(x) \ge a_n X + b_n$
|
||
|
for all $n$.
|
||
|
Hence
|
||
|
\[
|
||
|
\bE[c(X) | \cG] \ge a_n \bE[X | \cG] + \bE[b_n | \cG]
|
||
|
= a_n \bE[X | \cG] + b_n \text{a.s.}
|
||
|
\]
|
||
|
for all $n$.
|
||
|
Using that a countable union of sets o f measure zero has measure zero,
|
||
|
we conclude that a.s~this happens simultaneously for all $n$.
|
||
|
Hence
|
||
|
\[
|
||
|
\bE[c(X) | \cG] \ge \sup_n (a_n \bE[X | \cG] + b_n) \overset{\text{\autoref{convapprox}}}{=} c(\bE(X | \cG)).
|
||
|
\]
|
||
|
\end{refproof}
|
||
|
|
||
|
Recall
|
||
|
\begin{theorem}[Hölder's inequality]
|
||
|
Let $p,q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$.
|
||
|
Suppose $X \in L^p(\bP)$ and $Y \in L^q(\bP)$.
|
||
|
Then
|
||
|
\[
|
||
|
\bE(X Y) \le \underbrace{\bE(|X|^p)^{\frac{1}{p}}}_{\text{\reflectbox{$\coloneqq$}} \|X\|_{L^p}} \bE(|Y|^q)^{\frac{1}{q}}.
|
||
|
\]
|
||
|
\end{theorem}
|
||
|
|
||
|
\begin{theorem}[Conditional Hölder's inequality]
|
||
|
\label{ceprop9}
|
||
|
\label{choelder}
|
||
|
Let $p,q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$.
|
||
|
Suppose $X \in L^p(\bP)$ and $Y \in L^q(\bP)$.
|
||
|
Then
|
||
|
\[
|
||
|
\bE(X Y | \cG) \le \bE(|X|^p | \cG)^{\frac{1}{p}} \bE(|Y|^q | \cG)^{\frac{1}{q}}.
|
||
|
\]
|
||
|
\end{theorem}
|
||
|
\begin{proof}
|
||
|
Similar to the proof of Hölder's inequality.
|
||
|
\todo{Exercise}
|
||
|
\end{proof}
|
||
|
|
||
|
\begin{theorem}[Tower property]
|
||
|
% 10
|
||
|
\label{ceprop10}
|
||
|
\label{ctower}
|
||
|
Suppose $\cF \supset \cG \supset \cH$ are sub-$\sigma$-algebras.
|
||
|
Then
|
||
|
\[
|
||
|
\bE\left[\bE[X | \cG] \mid \cH\right] = \bE[X | \cH].
|
||
|
\]
|
||
|
\end{theorem}
|
||
|
\begin{proof}
|
||
|
\todo{Exercise}
|
||
|
\end{proof}
|
||
|
|
||
|
\begin{theorem}[Taking out what is known]
|
||
|
% 11
|
||
|
\label{ceprop11}
|
||
|
\label{takingoutwhatisknown}
|
||
|
|
||
|
If $Y$ is $\cG$-measurable and bounded, then
|
||
|
\[
|
||
|
\bE[YX| \cG] \overset{\text{a.s.}}{=} Y \bE[X | \cG].
|
||
|
\]
|
||
|
\end{theorem}
|
||
|
\begin{proof}
|
||
|
Assume w.l.o.g.~$X \ge 0$.
|
||
|
Assume $Y = \One_B$, then $Y$ simple, then take the limit (using that $Y$ is bounded).
|
||
|
\todo{Exercise}
|
||
|
\end{proof}
|
||
|
|
||
|
\begin{definition}
|
||
|
Let $\cG$ and $\cH$ be $\sigma$-algebras.
|
||
|
We call $\cG$ and $\cH$ \vocab[$\sigma$-algebra!independent]{independent},
|
||
|
if % TODO
|
||
|
\end{definition}
|
||
|
|
||
|
\begin{theorem}[Role of independence]
|
||
|
\label{ceprop12}
|
||
|
\label{roleofindependence}
|
||
|
If $\cH$ is a sub-$\sigma$-algebra of $\cF$ and $\cH$ is independent
|
||
|
of $\sigma(\sigma(X), \cG)$, then
|
||
|
\[
|
||
|
\bE[X | \sigma(\cG, \cH)] \overset{\text{a.s.}}{=} \bE[X | \cG].
|
||
|
\]
|
||
|
\end{theorem}
|
||
|
\begin{example}
|
||
|
If $X$ is independent of $\cG$,
|
||
|
then $\bE[X | \cG] \overset{\text{a.s.}}{=} \bE[X]$.
|
||
|
\end{example}
|
||
|
\begin{example}[Martingale property of the simple random walk]
|
||
|
Suppose $X_1,X_2,\ldots$ are i.i.d.~with $\bP[X_i = 1] = \bP[X_i = -1] = \frac{1}{2}$.
|
||
|
Let $S_n \coloneqq \sum_{i=1}^n X_i$ be the \vocab{simple random walk}.
|
||
|
Let $\cF$ denote the $\sigma$-algebra on the product space.
|
||
|
Define $\cF_n \coloneqq \sigma(X_1,\ldots)$.
|
||
|
Intuitively, $\cF_n$ contains all the information gathered until time $n$.
|
||
|
We have $\cF_1 \subset \cF_2 \subset \cF_3 \subset \ldots$
|
||
|
|
||
|
For $\bE[S_{n+1} | \cF_n]$ we obtain
|
||
|
\begin{IEEEeqnarray*}{rCl}
|
||
|
\bE[S_{n+1} | \cF_n] &\overset{\autoref{celinearity}}{=}&
|
||
|
\bE[S_n | \cF_n] + \bE[X_{n+1} | \cF_n]\\
|
||
|
&\overset{\text{a.s.}}{=}& S_n + \bE[X_{n+1} | \cF_n]\\
|
||
|
&\overset{\text{\autoref{ceprop12}}}{=}& S_{n} + \bE[X_n]\\
|
||
|
&=& S_n
|
||
|
\end{IEEEeqnarray*}
|
||
|
|
||
|
\end{example}
|