2023-07-05 17:53:33 +02:00
|
|
|
\subsection{List of Distributions}
|
2023-07-04 14:16:25 +02:00
|
|
|
|
2023-07-05 17:53:33 +02:00
|
|
|
{\rowcolors{2}{gray!10}{white}
|
|
|
|
\begin{longtable}{llllllll}
|
|
|
|
& Symbol & Mass (PMF) & Distribution (CDF) & $\bE$ & $\Var$ & $\phi_X(t) = \bE[e^{\i t X}]$ & $M_X(t) = \bE[e^{tX}]$ \\
|
|
|
|
\hline
|
|
|
|
Deterministic &
|
|
|
|
$\delta_a$ &
|
|
|
|
$\One_{x = a}$&
|
|
|
|
$\One_{[a,\infty)}$ &
|
|
|
|
$a$ &
|
|
|
|
$0$ &
|
|
|
|
$e^{\i t a}$ &
|
|
|
|
$e^{t a}$ \\
|
|
|
|
Bernoulli &
|
|
|
|
$\Bin(1,p)$ & & & & & &\\
|
|
|
|
Binomial &
|
|
|
|
$\Bin(n,p)$ &
|
|
|
|
$\binom{n}{k} p^{k} (1-p)^{n-k}$ &
|
|
|
|
$\sum_{j=0}^{\left\lfloor x \right\rfloor} \binom{n}{j} p^{j} (1-p)^{n-j}$ &
|
|
|
|
$n p$&
|
|
|
|
$n p (1-p)$ &
|
|
|
|
$((1-p) + pe^{\i t})^n$ &
|
|
|
|
$((1-p) + pe^t)^n$\\
|
|
|
|
Geometric &
|
|
|
|
$\Geo(p)$ &
|
|
|
|
$(1-p)^{k-1} p$ &
|
2023-07-06 00:37:02 +02:00
|
|
|
$1 - (1 - p)^{\left\lfloor x \right\rfloor}$ &
|
2023-07-05 17:53:33 +02:00
|
|
|
$\frac{1}{p}$ &
|
|
|
|
$\frac{1-p}{p^2}$&
|
|
|
|
$\frac{p e^{\i t}}{1 - (1 -p)e^{\i t}}$ &
|
|
|
|
$\frac{p e^{t}}{1 - (1 -p)e^{t}}$\\
|
|
|
|
Poisson &
|
|
|
|
$\Poi(\lambda)$ &
|
|
|
|
$\frac{\lambda^k e^{-\lambda}}{k!}$ &
|
|
|
|
$e^{-\lambda} \sum_{j=0}^{\left\lfloor x \right\rfloor} \frac{\lambda^j}{j!}$ &
|
|
|
|
$\lambda$ &
|
|
|
|
$\lambda$ &
|
|
|
|
$e^{\lambda (e^{\i t} -1)}$ &
|
|
|
|
$e^{\lambda (e^{t} -1)}$\\
|
|
|
|
\end{longtable}
|
|
|
|
}
|
2023-07-04 14:16:25 +02:00
|
|
|
|
2023-07-05 17:53:33 +02:00
|
|
|
{\rowcolors{2}{gray!10}{white}
|
|
|
|
\begin{longtable}{llllllll}
|
|
|
|
& Symbol & Density (PDF) & Distribution (CDF) & $\bE$ & $\Var$ & $\phi_X(t) = \bE[e^{\i t X}]$ & $M_X(t) = \bE[e^{tX}]$ \\
|
|
|
|
\hline
|
|
|
|
Uniform &
|
|
|
|
$\Unif([a,b])$ &
|
|
|
|
$\frac{1}{b-a} \One_{[a,b]}$ &
|
|
|
|
$\frac{x-a}{b-a} \One_{[a,b]} + \One_{(b,\infty)}$ &
|
|
|
|
$\frac{a+b}{2}$ &
|
|
|
|
$\frac{(b-a)^2}{12}$ &
|
|
|
|
$\frac{e^{\i t b} - e^{\i t a}}{t (b-a)}$\footnote{$\phi_X(0) = 1$ }&
|
|
|
|
$\frac{e^{t b} - e^{t a}}{t (b-a)}$\footnote{$M_X(0) = 1$}\\
|
|
|
|
Exponential &
|
|
|
|
$\Exp(\lambda)$ &
|
|
|
|
$\One_{x \ge 0}\lambda e^{-\lambda x}$ &
|
|
|
|
$\One_{x \ge 0} (1 - e^{-\lambda x})$ &
|
|
|
|
$\frac{1}{\lambda}$ &
|
|
|
|
$\frac{1}{\lambda^2}$ &
|
|
|
|
$\frac{\lambda}{\lambda - \i t}$ &
|
|
|
|
$\frac{\lambda}{\lambda - t}, t < \lambda$\\
|
|
|
|
Cauchy &
|
|
|
|
$\Cauchy(x_0, \gamma)$ &
|
|
|
|
$\frac{1}{\pi \gamma \left( 1 + \left( \frac{x - x_0}{\gamma} \right)^2 \right) }$ &
|
|
|
|
$\frac{1}{\pi} \arctan \left( \frac{x - x_0}{\gamma} \right) + \frac{1}{2}$ &
|
|
|
|
n/a &
|
|
|
|
n/a &
|
|
|
|
$e^{x_0 \i t - \gamma |t|}$ &
|
|
|
|
n/a \\
|
|
|
|
Normal &
|
|
|
|
$\cN(\mu, \sigma)$ &
|
|
|
|
$\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(\mu - x)^2}{2 \sigma^2}}$ &
|
|
|
|
$\Phi\left( \frac{x - \mu}{\sigma} \right) $ &
|
|
|
|
$\mu$ &
|
|
|
|
$\sigma^2$ &
|
|
|
|
$e^{\i \mu t - \frac{\sigma^2 t^2}{2}}$ &
|
|
|
|
$e^{\mu t + \frac{\sigma^2 t^2}{2}}$\\
|
|
|
|
\end{longtable}
|
|
|
|
}
|