2023-07-07 17:42:38 +02:00
|
|
|
\section{(Counter)examples}
|
|
|
|
|
|
|
|
Consistent families and inconsistent families
|
|
|
|
|
|
|
|
Notions of convergence
|
2023-07-04 14:16:25 +02:00
|
|
|
|
2023-07-05 17:53:41 +02:00
|
|
|
Exercise 4.3
|
|
|
|
10.2
|
|
|
|
|
2023-07-07 17:42:38 +02:00
|
|
|
|
2023-07-16 01:15:14 +02:00
|
|
|
\begin{example}[Martingale not converging in $L^1$]
|
|
|
|
Let $\Omega = [0,1]$, $\bP = \lambda\upharpoonright [0,1]$.
|
|
|
|
Define $X_n \coloneqq 2^n \cdot \One_{[0,2^n]}$,
|
|
|
|
and let $(\cF_n)_n$ be the canonical filtration.
|
|
|
|
Then $(X_n)_{n}$ is a Martingale
|
|
|
|
with $\bE[X_0] = 1$,
|
|
|
|
but $X_n \xrightarrow{a.s.} 0$.
|
|
|
|
\end{example}
|
2023-07-07 17:42:38 +02:00
|
|
|
|
|
|
|
|
2023-07-16 01:15:14 +02:00
|
|
|
Stopping times
|
2023-07-07 17:42:38 +02:00
|
|
|
|
2023-07-16 01:15:14 +02:00
|
|
|
\begin{example}[{Martingale such that $\bE[X_T] \neq \bE[X_0]$}]
|
|
|
|
Consider the simple random walk and $T = \inf \{n : X_n \ge 1\}$.
|
|
|
|
Obviously $X_T = 1$.
|
|
|
|
\end{example}
|
2023-07-07 17:42:38 +02:00
|
|
|
|
|
|
|
|