migrate dremark
This commit is contained in:
parent
e813f9dfc2
commit
ba13af0c72
1 changed files with 2 additions and 2 deletions
|
@ -1844,9 +1844,9 @@ Let $R = \mathfrak{k}[X_1,\ldots,X_n]$ and $I \subseteq R$ an ideal.
|
|||
\begin{corollary}\label{codimintersection}
|
||||
Let $A$ and $B$ be irreducible subsets of $\mathfrak{k}^n$. If $C$ is an irreducible component of $A \cap B$, then $\codim(C, \mathfrak{k}^n) \le \codim(A, \mathfrak{k}^n) + \codim(B, \mathfrak{k}^n)$.
|
||||
\end{corollary}
|
||||
\begin{dremark}
|
||||
\begin{remark}+
|
||||
Equivalently, $\dim(C) \ge \dim(A) + \dim(B)-n$.
|
||||
\end{dremark}
|
||||
\end{remark}
|
||||
\begin{proof}
|
||||
Let $X = A \times B \subseteq \mathfrak{k}^{2n}$, where we use $(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ as coordinates of $\mathfrak{k}^{2n}$.
|
||||
Let $\Delta \coloneqq \{(x_1,\ldots,x_n,x_1,\ldots,x_n) | x \in \mathfrak{k}^n\} $ be the diagonal in $\mathfrak{k}^n \times \mathfrak{k}^n$.
|
||||
|
|
Loading…
Reference in a new issue