This commit is contained in:
Maximilian Keßler 2022-02-16 02:11:09 +01:00
parent 1a9e8280af
commit affe4494f3

View file

@ -2465,7 +2465,7 @@ The following is somewhat harder than in the affine case:
\item The category of sets. \item The category of sets.
\item The category of groups. \item The category of groups.
\item The category of rings. \item The category of rings.
\item If $R$ is a ring, the category of $R$-modules and the category $\foralllg_R$ of $R$-algebras \item If $R$ is a ring, the category of $R$-modules and the category $\Alg_R$ of $R$-algebras
\item The category of topological spaces \item The category of topological spaces
\item The category $\Var_\mathfrak{k}$ of varieties over $\mathfrak{k}$ (see \ref{defvariety}) \item The category $\Var_\mathfrak{k}$ of varieties over $\mathfrak{k}$ (see \ref{defvariety})
\item If $\mathcal{A}$ is a category, then the \vocab{opposite category} or \vocab{dual category} is defined by $\Ob(\mathcal{A}\op) = \Ob(\mathcal{A})$ and $\Hom_{\mathcal{A}\op}(X,Y) = \Hom_\mathcal{A}(Y,X)$. \item If $\mathcal{A}$ is a category, then the \vocab{opposite category} or \vocab{dual category} is defined by $\Ob(\mathcal{A}\op) = \Ob(\mathcal{A})$ and $\Hom_{\mathcal{A}\op}(X,Y) = \Hom_\mathcal{A}(Y,X)$.
@ -2482,7 +2482,7 @@ The following is somewhat harder than in the affine case:
\item The category of abelian groups is a full subcategory of the category of groups. \item The category of abelian groups is a full subcategory of the category of groups.
It can be identified with the category of $\Z$-modules. It can be identified with the category of $\Z$-modules.
\item The category of finitely generated $R$-modules as a full subcategory of the category of $R$-modules. \item The category of finitely generated $R$-modules as a full subcategory of the category of $R$-modules.
\item The category of $R$-algebras of finite type as a full subcategory of $\foralllg_R$. \item The category of $R$-algebras of finite type as a full subcategory of $\Alg_R$.
\item The category of affine varieties over $\mathfrak{k}$ as a full subcategory of the category of varieties over $\mathfrak{k}$. \item The category of affine varieties over $\mathfrak{k}$ as a full subcategory of the category of varieties over $\mathfrak{k}$.
\end{itemize} \end{itemize}
\end{example} \end{example}
@ -2563,17 +2563,17 @@ The following is somewhat harder than in the affine case:
\begin{itemize} \begin{itemize}
\item Let $X,Y$ be varieties over $\mathfrak{k}$. Then the map \item Let $X,Y$ be varieties over $\mathfrak{k}$. Then the map
\begin{align} \begin{align}
\phi: \Hom_{\Var_\mathfrak{k}}(X,Y) &\longrightarrow \Hom_{\foralllg_\mathfrak{k}}(\mathcal{O}_Y(Y), \mathcal{O}_X(X)) \\ \phi: \Hom_{\Var_\mathfrak{k}}(X,Y) &\longrightarrow \Hom_{\Alg_\mathfrak{k}}(\mathcal{O}_Y(Y), \mathcal{O}_X(X)) \\
(X \xrightarrow{f} Y) &\longmapsto (\mathcal{O}_Y(Y) \xrightarrow{f\st} \mathcal{O}_X(X)) (X \xrightarrow{f} Y) &\longmapsto (\mathcal{O}_Y(Y) \xrightarrow{f\st} \mathcal{O}_X(X))
\end{align} \end{align}
is injective when $Y$ is quasi-affine and bijective when $Y$ is affine. is injective when $Y$ is quasi-affine and bijective when $Y$ is affine.
\item The contravariant functor \item The contravariant functor
\begin{align} \begin{align}
F: \Var_\mathfrak{k} &\longrightarrow \foralllg_\mathfrak{k} \\ F: \Var_\mathfrak{k} &\longrightarrow \Alg_\mathfrak{k} \\
X &\longmapsto \mathcal{O}_X(X)\\ X &\longmapsto \mathcal{O}_X(X)\\
(X\xrightarrow{f} Y) &\longmapsto (\mathcal{O}_X(X) \xrightarrow{f\st} \mathcal{O}_Y(Y)) (X\xrightarrow{f} Y) &\longmapsto (\mathcal{O}_X(X) \xrightarrow{f\st} \mathcal{O}_Y(Y))
\end{align} \end{align}
restricts to an equivalence of categories between the category of affine varieties over $\mathfrak{k}$ and the full subcategory $\mathcal{A}$ of $\foralllg_\mathfrak{k}$, restricts to an equivalence of categories between the category of affine varieties over $\mathfrak{k}$ and the full subcategory $\mathcal{A}$ of $\Alg_\mathfrak{k}$,
having the $\mathfrak{k}$-algebras $A$ of finite type with $\nil A = \{0\} $ as objects. having the $\mathfrak{k}$-algebras $A$ of finite type with $\nil A = \{0\} $ as objects.
\end{itemize} \end{itemize}
\end{proposition} \end{proposition}
@ -2630,7 +2630,7 @@ The following is somewhat harder than in the affine case:
\end{proof} \end{proof}
\begin{remark} \begin{remark}
Note that giving a contravariant functor $\cC \to \cD$ is equivalent to giving a functor $\cC \to \cD\op$. We have thus shown that the category of affine varieties is equivalent to $\mathcal{A}\op$, where $\mathcal{A} \subsetneq \foralllg_\mathfrak{k}$ is the full subcategory of $\mathfrak{k}$-algebras $A$ of finite type with $\nil(A) = \{0\}$. Note that giving a contravariant functor $\cC \to \cD$ is equivalent to giving a functor $\cC \to \cD\op$. We have thus shown that the category of affine varieties is equivalent to $\mathcal{A}\op$, where $\mathcal{A} \subsetneq \Alg_\mathfrak{k}$ is the full subcategory of $\mathfrak{k}$-algebras $A$ of finite type with $\nil(A) = \{0\}$.
\end{remark} \end{remark}
\subsubsection{Affine open subsets are a topology base} \subsubsection{Affine open subsets are a topology base}