fix \Alg
This commit is contained in:
parent
1a9e8280af
commit
affe4494f3
1 changed files with 6 additions and 6 deletions
|
@ -2465,7 +2465,7 @@ The following is somewhat harder than in the affine case:
|
||||||
\item The category of sets.
|
\item The category of sets.
|
||||||
\item The category of groups.
|
\item The category of groups.
|
||||||
\item The category of rings.
|
\item The category of rings.
|
||||||
\item If $R$ is a ring, the category of $R$-modules and the category $\foralllg_R$ of $R$-algebras
|
\item If $R$ is a ring, the category of $R$-modules and the category $\Alg_R$ of $R$-algebras
|
||||||
\item The category of topological spaces
|
\item The category of topological spaces
|
||||||
\item The category $\Var_\mathfrak{k}$ of varieties over $\mathfrak{k}$ (see \ref{defvariety})
|
\item The category $\Var_\mathfrak{k}$ of varieties over $\mathfrak{k}$ (see \ref{defvariety})
|
||||||
\item If $\mathcal{A}$ is a category, then the \vocab{opposite category} or \vocab{dual category} is defined by $\Ob(\mathcal{A}\op) = \Ob(\mathcal{A})$ and $\Hom_{\mathcal{A}\op}(X,Y) = \Hom_\mathcal{A}(Y,X)$.
|
\item If $\mathcal{A}$ is a category, then the \vocab{opposite category} or \vocab{dual category} is defined by $\Ob(\mathcal{A}\op) = \Ob(\mathcal{A})$ and $\Hom_{\mathcal{A}\op}(X,Y) = \Hom_\mathcal{A}(Y,X)$.
|
||||||
|
@ -2482,7 +2482,7 @@ The following is somewhat harder than in the affine case:
|
||||||
\item The category of abelian groups is a full subcategory of the category of groups.
|
\item The category of abelian groups is a full subcategory of the category of groups.
|
||||||
It can be identified with the category of $\Z$-modules.
|
It can be identified with the category of $\Z$-modules.
|
||||||
\item The category of finitely generated $R$-modules as a full subcategory of the category of $R$-modules.
|
\item The category of finitely generated $R$-modules as a full subcategory of the category of $R$-modules.
|
||||||
\item The category of $R$-algebras of finite type as a full subcategory of $\foralllg_R$.
|
\item The category of $R$-algebras of finite type as a full subcategory of $\Alg_R$.
|
||||||
\item The category of affine varieties over $\mathfrak{k}$ as a full subcategory of the category of varieties over $\mathfrak{k}$.
|
\item The category of affine varieties over $\mathfrak{k}$ as a full subcategory of the category of varieties over $\mathfrak{k}$.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{example}
|
\end{example}
|
||||||
|
@ -2563,17 +2563,17 @@ The following is somewhat harder than in the affine case:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Let $X,Y$ be varieties over $\mathfrak{k}$. Then the map
|
\item Let $X,Y$ be varieties over $\mathfrak{k}$. Then the map
|
||||||
\begin{align}
|
\begin{align}
|
||||||
\phi: \Hom_{\Var_\mathfrak{k}}(X,Y) &\longrightarrow \Hom_{\foralllg_\mathfrak{k}}(\mathcal{O}_Y(Y), \mathcal{O}_X(X)) \\
|
\phi: \Hom_{\Var_\mathfrak{k}}(X,Y) &\longrightarrow \Hom_{\Alg_\mathfrak{k}}(\mathcal{O}_Y(Y), \mathcal{O}_X(X)) \\
|
||||||
(X \xrightarrow{f} Y) &\longmapsto (\mathcal{O}_Y(Y) \xrightarrow{f\st} \mathcal{O}_X(X))
|
(X \xrightarrow{f} Y) &\longmapsto (\mathcal{O}_Y(Y) \xrightarrow{f\st} \mathcal{O}_X(X))
|
||||||
\end{align}
|
\end{align}
|
||||||
is injective when $Y$ is quasi-affine and bijective when $Y$ is affine.
|
is injective when $Y$ is quasi-affine and bijective when $Y$ is affine.
|
||||||
\item The contravariant functor
|
\item The contravariant functor
|
||||||
\begin{align}
|
\begin{align}
|
||||||
F: \Var_\mathfrak{k} &\longrightarrow \foralllg_\mathfrak{k} \\
|
F: \Var_\mathfrak{k} &\longrightarrow \Alg_\mathfrak{k} \\
|
||||||
X &\longmapsto \mathcal{O}_X(X)\\
|
X &\longmapsto \mathcal{O}_X(X)\\
|
||||||
(X\xrightarrow{f} Y) &\longmapsto (\mathcal{O}_X(X) \xrightarrow{f\st} \mathcal{O}_Y(Y))
|
(X\xrightarrow{f} Y) &\longmapsto (\mathcal{O}_X(X) \xrightarrow{f\st} \mathcal{O}_Y(Y))
|
||||||
\end{align}
|
\end{align}
|
||||||
restricts to an equivalence of categories between the category of affine varieties over $\mathfrak{k}$ and the full subcategory $\mathcal{A}$ of $\foralllg_\mathfrak{k}$,
|
restricts to an equivalence of categories between the category of affine varieties over $\mathfrak{k}$ and the full subcategory $\mathcal{A}$ of $\Alg_\mathfrak{k}$,
|
||||||
having the $\mathfrak{k}$-algebras $A$ of finite type with $\nil A = \{0\} $ as objects.
|
having the $\mathfrak{k}$-algebras $A$ of finite type with $\nil A = \{0\} $ as objects.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
|
@ -2630,7 +2630,7 @@ The following is somewhat harder than in the affine case:
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
Note that giving a contravariant functor $\cC \to \cD$ is equivalent to giving a functor $\cC \to \cD\op$. We have thus shown that the category of affine varieties is equivalent to $\mathcal{A}\op$, where $\mathcal{A} \subsetneq \foralllg_\mathfrak{k}$ is the full subcategory of $\mathfrak{k}$-algebras $A$ of finite type with $\nil(A) = \{0\}$.
|
Note that giving a contravariant functor $\cC \to \cD$ is equivalent to giving a functor $\cC \to \cD\op$. We have thus shown that the category of affine varieties is equivalent to $\mathcal{A}\op$, where $\mathcal{A} \subsetneq \Alg_\mathfrak{k}$ is the full subcategory of $\mathfrak{k}$-algebras $A$ of finite type with $\nil(A) = \{0\}$.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
\subsubsection{Affine open subsets are a topology base}
|
\subsubsection{Affine open subsets are a topology base}
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue