diff --git a/2021_Algebra_I.tex b/2021_Algebra_I.tex index 3daf7c1..26780e1 100644 --- a/2021_Algebra_I.tex +++ b/2021_Algebra_I.tex @@ -776,44 +776,44 @@ In general, these inequalities may be strict. \subsubsection{Matroids} \begin{definition}[Hull operator] - Let $X$ be a set, $\cP(X)$ the power set of $X$. A \vocab{Hull operator} on $X$ is a map $\cP(X) \xrightarrow{\cH} \cP(X)$ such that + Let $X$ be a set, $\mathcal{P}(X)$ the power set of $X$. A \vocab{Hull operator} on $X$ is a map $\mathcal{P}(X) \xrightarrow{\mathcal{H}} \mathcal{P}(X)$ such that \begin{enumerate} - \item[H1] $\forall A \in \cP(X) ~ A \subseteq \cH(A)$. - \item[H2] $A \subseteq B \subseteq X \implies \cH(A) \subseteq \cH(B)$. - \item[H3] $\cH(\cH(X)) = \cH(X)$. + \item[H1] $\forall A \in \mathcal{P}(X) ~ A \subseteq \mathcal{H}(A)$. + \item[H2] $A \subseteq B \subseteq X \implies \mathcal{H}(A) \subseteq \mathcal{H}(B)$. + \item[H3] $\mathcal{H}(\mathcal{H}(X)) = \mathcal{H}(X)$. \end{enumerate} - We call $\cH$ \vocab{matroidal} if in addition the following conditions hold: + We call $\mathcal{H}$ \vocab{matroidal} if in addition the following conditions hold: \begin{enumerate} - \item[M] If $m,n \in X$ and $A \subseteq X$ then $m \in \cH( \{n\} \cup A) \setminus \cH(A) \iff n \in \cH(\{m\} \cup A) \setminus \cH(A).$ - \item[F] $\cH(A) = \bigcup_{F \subseteq A \text{ finite}} \cH(F)$. + \item[M] If $m,n \in X$ and $A \subseteq X$ then $m \in \mathcal{H}( \{n\} \cup A) \setminus \mathcal{H}(A) \iff n \in \mathcal{H}(\{m\} \cup A) \setminus \mathcal{H}(A).$ + \item[F] $\mathcal{H}(A) = \bigcup_{F \subseteq A \text{ finite}} \mathcal{H}(F)$. \end{enumerate} - In this case, $S \subseteq X$ is called \vocab{Independent subset}, if $s \not\in \cH(S \setminus \{s\})$ for all $s \in S$ and - \vocab[Generating subset]{generating} if $X = \cH(S)$. + In this case, $S \subseteq X$ is called \vocab{Independent subset}, if $s \not\in \mathcal{H}(S \setminus \{s\})$ for all $s \in S$ and + \vocab[Generating subset]{generating} if $X = \mathcal{H}(S)$. $S$ is called a \vocab{base}, if it is both generating and independent. \end{definition} \begin{theorem} - If $\cH$ is a matroidal hull operator on $X$, then a basis exists, every independent set is contained in a base and two arbitrary bases have the same cardinality. + If $\mathcal{H}$ is a matroidal hull operator on $X$, then a basis exists, every independent set is contained in a base and two arbitrary bases have the same cardinality. \end{theorem} \begin{example} - Let $K$ be a field, $V$ a $K$-vector space and $\cL(T)$ the $K$-linear hull of $T$ for $T \subseteq V$. - Then $\cL$ is a matroidal hull operator on $V$. + Let $K$ be a field, $V$ a $K$-vector space and $\mathcal{L}(T)$ the $K$-linear hull of $T$ for $T \subseteq V$. + Then $\mathcal{L}$ is a matroidal hull operator on $V$. \end{example} \subsubsection{Transcendence degree} \begin{lemma} - Let $L / K$ be a field extension and let $\cH(T)$ be the algebraic closure in $L$ of the subfield of $L$ generated by $K$ and $T$.\footnote{This is the intersection of all subfields of $L$ containing $K \cup T$, or the field of quotients of the sub-$K$-algebra of $L$ generated by $T$.} - Then $\cH$ is a matroidal hull operator. + Let $L / K$ be a field extension and let $\mathcal{H}(T)$ be the algebraic closure in $L$ of the subfield of $L$ generated by $K$ and $T$.\footnote{This is the intersection of all subfields of $L$ containing $K \cup T$, or the field of quotients of the sub-$K$-algebra of $L$ generated by $T$.} + Then $\mathcal{H}$ is a matroidal hull operator. \end{lemma} \begin{proof} - H1, H2 and F are trivial. For an algebraically closed subfield $K \subseteq M \subseteq L$ we have $\cH(M) = M$. Thus $\cH(\cH(T)) = \cH(T)$ (H3). + H1, H2 and F are trivial. For an algebraically closed subfield $K \subseteq M \subseteq L$ we have $\mathcal{H}(M) = M$. Thus $\mathcal{H}(\mathcal{H}(T)) = \mathcal{H}(T)$ (H3). - Let $x,y \in L$, $T \subseteq L$ and $x \in \cH(T \cup \{y\}) \setminus \cH(T)$. We have to show that $y \in \cH(T \cup \{x\}) \setminus \cH(T)$. - If $y \in \cH(T)$ we have $\cH(T \cup \{y\}) \subseteq \cH(\cH(T)) = \cH(T) \implies x \in \cH(T) \setminus \cH(T) \lightning$. - Hence it is sufficient to show $y \in \cH(T \cup \{x\})$. \Wlog $T = \emptyset$ (replace $K$ be the subfield generated by $K \cup T$). + Let $x,y \in L$, $T \subseteq L$ and $x \in \mathcal{H}(T \cup \{y\}) \setminus \mathcal{H}(T)$. We have to show that $y \in \mathcal{H}(T \cup \{x\}) \setminus \mathcal{H}(T)$. + If $y \in \mathcal{H}(T)$ we have $\mathcal{H}(T \cup \{y\}) \subseteq \mathcal{H}(\mathcal{H}(T)) = \mathcal{H}(T) \implies x \in \mathcal{H}(T) \setminus \mathcal{H}(T) \lightning$. + Hence it is sufficient to show $y \in \mathcal{H}(T \cup \{x\})$. \Wlog $T = \emptyset$ (replace $K$ be the subfield generated by $K \cup T$). Then $x$ is algebraic over the subfield $M$ of $L$ generated by $K \cup \{y\}$. Thus there exists $0 \neq P \in M[T]$ with $P(x) = 0$. The coefficients $p_i$ of $P$ belong to the field of quotients of the $K$-subalgebra of $L$ generated by $y$. There are thus polynomials $Q_i, R \in K[Y]$ such that $p_i = \frac{Q_i(y)}{R(y)}$, $R(y) \neq 0$. Let @@ -821,10 +821,10 @@ In general, these inequalities may be strict. Q(X,Y) \coloneqq \sum_{i=0}^{\infty} X^i Q_i(Y) = \sum_{i,j=0}^{\infty} q_{i,j}X^i Y^j = \sum_{j=0}^{\infty} Y^j \hat{Q_j}(X) \in K[X,Y] \]. Then $Q(x,y) = 0$. - Let $\hat{p_j} \coloneqq \hat{Q_j}(x)$. Then $\hat{P}(y) = 0$. As $Q \neq 0$ there is $(i,j) \in \N^2$ such that $q_{i,j} \neq 0$ and then $\hat{p_j} \neq 0$ as $x \not\in \cH(\emptyset)$. Thus $\hat{P} \in \hat{M}[X] \setminus \{0\} $, where $\hat{M}$ is the subfield of $L$ generated by $K$ and $x$. Thus $y$ is algebraic over $\hat{M}$ and $y \in \cH(\{x\})$, + Let $\hat{p_j} \coloneqq \hat{Q_j}(x)$. Then $\hat{P}(y) = 0$. As $Q \neq 0$ there is $(i,j) \in \N^2$ such that $q_{i,j} \neq 0$ and then $\hat{p_j} \neq 0$ as $x \not\in \mathcal{H}(\emptyset)$. Thus $\hat{P} \in \hat{M}[X] \setminus \{0\} $, where $\hat{M}$ is the subfield of $L$ generated by $K$ and $x$. Thus $y$ is algebraic over $\hat{M}$ and $y \in \mathcal{H}(\{x\})$, \end{proof} \begin{definition}[Transcendence Base] - Let $L / K$ be a field extension and $\cH(T)$ the algebraic closure in $L$ of the subfield generated by $K$ and $T$. A base for $(L, \cH)$ is called a \vocab{transcendence base} and the \vocab{transcendence degree} $\trdeg(L / K)$ is defined as the cardinality of any transcendence base of $L / K$. + Let $L / K$ be a field extension and $\mathcal{H}(T)$ the algebraic closure in $L$ of the subfield generated by $K$ and $T$. A base for $(L, \mathcal{H})$ is called a \vocab{transcendence base} and the \vocab{transcendence degree} $\trdeg(L / K)$ is defined as the cardinality of any transcendence base of $L / K$. \end{definition} \begin{remark} $L / K$ is algebraic iff $\trdeg(L / K) = 0$. @@ -2644,7 +2644,7 @@ The following is somewhat harder than in the affine case: A set $\cB$ of open subsets of a topological space $X$ is called a \vocab{topology base} for $X$ if every open subset of $X$ can be written as a (possibly empty) union of elements of $\cB$. \end{definition} \begin{fact} -If $X$ is a set, then $\cB \subseteq \cP(X)$ is a base for some topology on $X$ iff $X = \bigcup_{U \in \cB} U$ and for arbitrary $U, V \in \cB, U \cap V$ is a union of elements of $\cB$. +If $X$ is a set, then $\cB \subseteq \mathcal{P}(X)$ is a base for some topology on $X$ iff $X = \bigcup_{U \in \cB} U$ and for arbitrary $U, V \in \cB, U \cap V$ is a union of elements of $\cB$. \end{fact} \begin{definition} Let $X$ be a variety.