get rid of legacy macros
This commit is contained in:
parent
55477f0984
commit
8263aa6d10
2 changed files with 6 additions and 8 deletions
10
algebra.sty
10
algebra.sty
|
@ -37,14 +37,9 @@
|
||||||
\newcommand{\Vp}{\ensuremath V_{\mathbb{P}}}%\Spec}}
|
\newcommand{\Vp}{\ensuremath V_{\mathbb{P}}}%\Spec}}
|
||||||
\newcommand{\Pn}{\bP^n}%\Spec}}
|
\newcommand{\Pn}{\bP^n}%\Spec}}
|
||||||
|
|
||||||
\newcommand{\npr}{\footnote{Not relevant for the exam.}}
|
|
||||||
\newcommand{\limrel}{\footnote{Limited relevance for the exam.}} % may appear in 3x questions
|
|
||||||
%\DeclareMathOperator{\ev}{ev}
|
|
||||||
\DeclareMathOperator{\Ker}{Ker}
|
\DeclareMathOperator{\Ker}{Ker}
|
||||||
\DeclareMathOperator{\nil}{\mathfrak{nil}}
|
\DeclareMathOperator{\nil}{\mathfrak{nil}}
|
||||||
%\DeclareMathOperator{\rad}{\mathfrak{rad}}
|
|
||||||
\RequirePackage{stackengine}
|
|
||||||
\stackMath
|
|
||||||
\usetikzlibrary{arrows.meta,
|
\usetikzlibrary{arrows.meta,
|
||||||
quotes, babel}
|
quotes, babel}
|
||||||
|
|
||||||
|
@ -53,3 +48,6 @@
|
||||||
\def\existsone{\exists!}
|
\def\existsone{\exists!}
|
||||||
\def\defon#1{\upharpoonright_{#1}}
|
\def\defon#1{\upharpoonright_{#1}}
|
||||||
\DeclareMathOperator{\Id}{Id}
|
\DeclareMathOperator{\Id}{Id}
|
||||||
|
|
||||||
|
% \RequirePackage{stackengine}
|
||||||
|
% \stackMath
|
||||||
|
|
|
@ -1549,7 +1549,7 @@ Let $R = \mathfrak{k}[X_1,\ldots,X_n]$ and $I \subseteq R$ an ideal.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
|
|
||||||
\subsubsection{Application to the property of being a UFD}
|
\subsubsection{Application to the property of being a UFD}
|
||||||
\begin{proposition}\limrel
|
\begin{proposition}
|
||||||
Let $R$ be a Noetherian domain. Then $R$ is a UFD iff every $\fp \in \Spec R$ with $\hght(\fp)= 1$\footnote{In other words, every $\subseteq$-minimal element of the set of non-zero prime ideals of $R$ } is a principal ideal.
|
Let $R$ be a Noetherian domain. Then $R$ is a UFD iff every $\fp \in \Spec R$ with $\hght(\fp)= 1$\footnote{In other words, every $\subseteq$-minimal element of the set of non-zero prime ideals of $R$ } is a principal ideal.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
@ -1565,7 +1565,7 @@ Let $R = \mathfrak{k}[X_1,\ldots,X_n]$ and $I \subseteq R$ an ideal.
|
||||||
Thus $\fp = pR$ for some prime element $p$. We have $p | f$ since $f \in \fp$. As $f$ is irreducible, $p$ and $f$ are multiplicatively equivalent. Thus $f$ is a prime element.
|
Thus $\fp = pR$ for some prime element $p$. We have $p | f$ since $f \in \fp$. As $f$ is irreducible, $p$ and $f$ are multiplicatively equivalent. Thus $f$ is a prime element.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\subsection{The Jacobson radical}\limrel
|
\subsection{The Jacobson radical}
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
For a ring $A, \bigcap_{\mathfrak{m} \in \MaxSpec A} \mathfrak{m} = \{a \in A | \forall x \in A ~ 1 - ax \in A^{\times }\} \text{\reflectbox{$\coloneqq$}} \rad(A)$, the \vocab{Jacobson radical} of $A$.
|
For a ring $A, \bigcap_{\mathfrak{m} \in \MaxSpec A} \mathfrak{m} = \{a \in A | \forall x \in A ~ 1 - ax \in A^{\times }\} \text{\reflectbox{$\coloneqq$}} \rad(A)$, the \vocab{Jacobson radical} of $A$.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
|
|
Loading…
Reference in a new issue