replace \bI

This commit is contained in:
Maximilian Keßler 2022-02-16 02:06:52 +01:00
parent 6089ea3a13
commit 6423c3c08e

View File

@ -1940,19 +1940,19 @@ Let $\mathfrak{l}$ be any field.
\subsubsection{Graded rings and homogeneous ideals}
\begin{notation}
Let $\bI = \N$ or $\bI = \Z$.
Let $\mathbb{I} = \N$ or $\mathbb{I} = \Z$.
\end{notation}
\begin{definition}
By an \vocab[Graded ring]{$\bI$-graded ring} $A_\bullet$ we understand a ring $A$ with a collection $(A_d)_{d \in \bI}$ of subgroups of the additive group $(A, +)$ such that $A_a \cdot A_b \subseteq A_{a + b}$ for $a,b \in \bI$ and such that $A = \bigoplus_{d \in \bI} A_d$ in the sense that every $r \in A$ has a unique decomposition $r = \sum_{d \in \bI} r_d$ with $r_d \in A_d$ and but finitely many $r_d \neq 0$.
By an \vocab[Graded ring]{$\mathbb{I}$-graded ring} $A_\bullet$ we understand a ring $A$ with a collection $(A_d)_{d \in \mathbb{I}}$ of subgroups of the additive group $(A, +)$ such that $A_a \cdot A_b \subseteq A_{a + b}$ for $a,b \in \mathbb{I}$ and such that $A = \bigoplus_{d \in \mathbb{I}} A_d$ in the sense that every $r \in A$ has a unique decomposition $r = \sum_{d \in \mathbb{I}} r_d$ with $r_d \in A_d$ and but finitely many $r_d \neq 0$.
We call the $r_d$ the \vocab{homogeneous components} of $r$.
An ideal $I \subseteq A$ is called \vocab{homogeneous} if $r \in I \implies \forall d \in \bI ~ r_d \in I_d$ where $I_d \coloneqq I \cap A_d$.
An ideal $I \subseteq A$ is called \vocab{homogeneous} if $r \in I \implies \forall d \in \mathbb{I} ~ r_d \in I_d$ where $I_d \coloneqq I \cap A_d$.
By a \vocab{graded ring} we understand an $\N$-graded ring. Tin this case, $A_{+} \coloneqq \bigoplus_{d=1}^{\infty} A_d = \{r \in A | r_0 = 0\} $ is called the \vocab{augmentation ideal} of $A$.
\end{definition}
\begin{remark}[Decomposition of $1$]
If $1 = \sum_{d \in \bI} \varepsilon_d$ is the decomposition into homogeneous components, then $\varepsilon_a = 1 \cdot \varepsilon_a = \sum_{b \in \bI} \varepsilon_a\varepsilon_b$ with $\varepsilon_a\varepsilon_b \in A_{a+b}$.
If $1 = \sum_{d \in \mathbb{I}} \varepsilon_d$ is the decomposition into homogeneous components, then $\varepsilon_a = 1 \cdot \varepsilon_a = \sum_{b \in \mathbb{I}} \varepsilon_a\varepsilon_b$ with $\varepsilon_a\varepsilon_b \in A_{a+b}$.
By the uniqueness of the decomposition into homogeneous components, $\varepsilon_a \varepsilon_0 = \varepsilon_a$ and $b \neq 0 \implies \varepsilon_a \varepsilon_b = 0$.
Applying the last equation with $a = 0$ gives $b\neq 0 \implies \varepsilon_b = \varepsilon_0 \varepsilon _b = 0$.
Thus $1 = \varepsilon_0 \in A_0$.
@ -1972,9 +1972,9 @@ Let $\mathfrak{l}$ be any field.
\end{proposition}
\begin{proof}
Most assertions are trivial. We only show that $J$ homogeneous $\implies \sqrt{J} $ homogeneous.
Let $A$ be $\bI$-graded, $f \in \sqrt{J} $ and $f = \sum_{d \in \bI} f_d$ the decomposition.
To show that all $f_d \in \sqrt{J} $, we use induction on $N_f \coloneqq \# \{d \in \bI | f_d \neq 0\}$.
$N_f = 0$ is trivial. Suppose $N_f > 0$ and $e \in \bI$ is maximal with $f_e \neq 0$.
Let $A$ be $\mathbb{I}$-graded, $f \in \sqrt{J} $ and $f = \sum_{d \in \mathbb{I}} f_d$ the decomposition.
To show that all $f_d \in \sqrt{J} $, we use induction on $N_f \coloneqq \# \{d \in \mathbb{I} | f_d \neq 0\}$.
$N_f = 0$ is trivial. Suppose $N_f > 0$ and $e \in \mathbb{I}$ is maximal with $f_e \neq 0$.
For $l \in \N$, the $le$-th homogeneous component of $f^l$ is $f_e^l$. Choosing $l$ large enough such that $f^l \in J$ and using the homogeneity of $J$, we find $f_e \in \sqrt{J}$.
As $\sqrt{J} $ is an ideal, $\tilde f \coloneqq f - f_e \in \sqrt{J} $. As $N_{\tilde f} = N_f -1$, the induction assumption may be applied to $\tilde f$ and shows $f_d \in \sqrt{J} $ for $d \neq e$.
\end{proof}
@ -2153,13 +2153,13 @@ Let $A = \mathfrak{k}[X_0,\ldots,X_n]$.
\subsection{Some remarks on homogeneous prime ideals}
\begin{lemma}\label{homprime}
Let $R_\bullet$ be an $\bI$ graded ring ($\bI = \N$ or $\bI = \Z$).
Let $R_\bullet$ be an $\mathbb{I}$ graded ring ($\mathbb{I} = \N$ or $\mathbb{I} = \Z$).
A homogeneous ideal $I \subseteq R$ is a prime ideal iff $1 \not\in I$ and for homogeneous elements $f, g \in R , fg \in I \implies f \in I \lor g \in I$.
\end{lemma}
\begin{proof}
$\implies$ is trivial.
It suffices to show that for arbitrary $f,g \in R fg \in I \implies f \in I \lor g \in I$.
Let $f = \sum_{d \in \bI} f_d, g = \sum_{d \in \bI} g_d $ be the decompositions into homogeneous components.
Let $f = \sum_{d \in \mathbb{I}} f_d, g = \sum_{d \in \mathbb{I}} g_d $ be the decompositions into homogeneous components.
If $f \not\in I$ and $g \not\in I$ there are $d,e \in I$ with $f_d \in I, g_e \in I$, and they may assumed to be maximal with this property.
As $I$ is homogeneous and $fg \in I$, we have $(fg)_{d+e} \in I$ but
\[