replace \cM

This commit is contained in:
Maximilian Keßler 2022-02-16 01:26:43 +01:00
parent d0755b27c3
commit 181476db17
2 changed files with 32 additions and 31 deletions

View File

@ -318,13 +318,13 @@ is injective. $n$ and the $a_i$ can be chosen such that $A$ is finite over the i
Let $\mathfrak{k}$ be a field, $R \coloneqq \mathfrak{k}[X_1,\ldots,X_n], I \subseteq R$ an ideal. Let $\mathfrak{k}$ be a field, $R \coloneqq \mathfrak{k}[X_1,\ldots,X_n], I \subseteq R$ an ideal.
\begin{definition}[zero] \begin{definition}[zero]
$x \in \mathfrak{k}^n$ is \vocab[Ideal!zero]{a zero of $I$} if $\A x \in I: P(x) = 0$. Let $\Va(I)$ denote the set of zeros if $I$ in $\mathfrak{k}^n$. $x \in \mathfrak{k}^n$ is \vocab[Ideal!zero]{a zero of $I$} if $\forall x \in I: P(x) = 0$. Let $\Va(I)$ denote the set of zeros if $I$ in $\mathfrak{k}^n$.
The \vocab[Ideal!zero]{zero in a field extension $\mathfrak{i}$ of $\mathfrak{k}$} is defined similarly. The \vocab[Ideal!zero]{zero in a field extension $\mathfrak{i}$ of $\mathfrak{k}$} is defined similarly.
\end{definition} \end{definition}
\begin{remark}[Set of zeros and generators] \begin{remark}[Set of zeros and generators]
Let $I$ be generated by $S$. Then $\{x \in R | \A s \in S: s(x) = 0\} = \Va(I)$. Thus zero sets of ideals correspond to solutions sets to systems of polynomial equations. Let $I$ be generated by $S$. Then $\{x \in R | \forall s \in S: s(x) = 0\} = \Va(I)$. Thus zero sets of ideals correspond to solutions sets to systems of polynomial equations.
If $S, \tilde{S}$ generate the same ideal $I$ they have the same set of solutions. Therefore we only consider zero sets of ideals. If $S, \tilde{S}$ generate the same ideal $I$ they have the same set of solutions. Therefore we only consider zero sets of ideals.
\end{remark} \end{remark}
@ -504,15 +504,15 @@ Let $X$ be a topological space.
\begin{enumerate}[A] \begin{enumerate}[A]
\item Every open subset of $X$ is quasi-compact. \item Every open subset of $X$ is quasi-compact.
\item Every descending sequence $A_0 \supseteq A_1 \supseteq \ldots$ of closed subsets of $X$ stabilizes. \item Every descending sequence $A_0 \supseteq A_1 \supseteq \ldots$ of closed subsets of $X$ stabilizes.
\item Every non-empty set $\cM$ of closed subsets of $X$ has a $\subseteq$-minimal element. \item Every non-empty set $\mathcal{M}$ of closed subsets of $X$ has a $\subseteq$-minimal element.
\end{enumerate} \end{enumerate}
\end{definition} \end{definition}
\begin{proof}\, \begin{proof}\,
\begin{enumerate} \begin{enumerate}
\item[A $\implies$ B] Let $A_j$ be a descending chain of closed subsets. Define $A \coloneqq \bigcap_{j = 0}^{\infty} A_j$. If A holds, the covering $X \setminus A = \bigcup_{j = 0}^{\infty} (X \setminus A_j)$ has a finite subcovering. \item[A $\implies$ B] Let $A_j$ be a descending chain of closed subsets. Define $A \coloneqq \bigcap_{j = 0}^{\infty} A_j$. If A holds, the covering $X \setminus A = \bigcup_{j = 0}^{\infty} (X \setminus A_j)$ has a finite subcovering.
\item[B $\implies$ C] Suppose $\cM$ does not have a $\subseteq$-minimal element. Using DC, one can construct a counterexample $A_1 \subsetneq A_2 \supsetneq \ldots$ to B. \item[B $\implies$ C] Suppose $\mathcal{M}$ does not have a $\subseteq$-minimal element. Using DC, one can construct a counterexample $A_1 \subsetneq A_2 \supsetneq \ldots$ to B.
\item[C $\implies$ A] Let $\bigcup_{i \in I} V_i$ be an open covering of an open subset $U \subseteq X$. \item[C $\implies$ A] Let $\bigcup_{i \in I} V_i$ be an open covering of an open subset $U \subseteq X$.
By C, the set $\cM \coloneqq \{X \setminus \bigcup_{i \in F} V_i | F \subseteq I \text{ finite} \}$ has a $\subseteq$-minimal element. By C, the set $\mathcal{M} \coloneqq \{X \setminus \bigcup_{i \in F} V_i | F \subseteq I \text{ finite} \}$ has a $\subseteq$-minimal element.
\end{enumerate} \end{enumerate}
\end{proof} \end{proof}
@ -778,7 +778,7 @@ In general, these inequalities may be strict.
Let $X$ be a set, $\cP(X)$ the power set of $X$. A \vocab{Hull operator} on $X$ is a map $\cP(X) \xrightarrow{\cH} \cP(X)$ such that Let $X$ be a set, $\cP(X)$ the power set of $X$. A \vocab{Hull operator} on $X$ is a map $\cP(X) \xrightarrow{\cH} \cP(X)$ such that
\begin{enumerate} \begin{enumerate}
\item[H1] $\A A \in \cP(X) ~ A \subseteq \cH(A)$. \item[H1] $\forall A \in \cP(X) ~ A \subseteq \cH(A)$.
\item[H2] $A \subseteq B \subseteq X \implies \cH(A) \subseteq \cH(B)$. \item[H2] $A \subseteq B \subseteq X \implies \cH(A) \subseteq \cH(B)$.
\item[H3] $\cH(\cH(X)) = \cH(X)$. \item[H3] $\cH(\cH(X)) = \cH(X)$.
\end{enumerate} \end{enumerate}
@ -1403,23 +1403,23 @@ Recall the definition of a normal field extension in the case of finite field ex
\end{definition} \end{definition}
\begin{definition} \begin{definition}
Suppose $L / K$ is an arbitrary field extension. Let $\Aut( L / K)$ be the set of automorphisms of $L$ leaving all elements of (the image in $L$ of) $K$ fixed. Suppose $L / K$ is an arbitrary field extension. Let $\forallut( L / K)$ be the set of automorphisms of $L$ leaving all elements of (the image in $L$ of) $K$ fixed.
Let $G \subseteq \Aut(L / K)$ be a subgroup. Then the \vocab{fixed field } is definied as Let $G \subseteq \forallut(L / K)$ be a subgroup. Then the \vocab{fixed field } is definied as
\[ \[
L^G \coloneqq \{l \in L | \A g \in G : g(l) = l\} L^G \coloneqq \{l \in L | \forall g \in G : g(l) = l\}
\] \]
\end{definition} \end{definition}
\begin{proposition}\label{characfixnormalfe} \begin{proposition}\label{characfixnormalfe}
Let $L / K$ be a normal field extension. If the characteristic of the fields is $O$, then $L^{\Aut( L / K)} = K$. Let $L / K$ be a normal field extension. If the characteristic of the fields is $O$, then $L^{\forallut( L / K)} = K$.
If the characteristic is $p > 0$, then $L^{\Aut(L / K)} = \{l \in L | \exists n \in \N ~ l^{p^n} \in K\}$. If the characteristic is $p > 0$, then $L^{\forallut(L / K)} = \{l \in L | \exists n \in \N ~ l^{p^n} \in K\}$.
\end{proposition} \end{proposition}
\begin{proof} \begin{proof}
In both cases $L^G \supseteq$ is easy to see. In both cases $L^G \supseteq$ is easy to see.
If $K \subseteq M \subseteq L$ is an intermediate field, then $L$ is normal over $M$. If $\sigma \in \Aut(M /K)$, an application of Zorn's lemma to the set of all $(N, \vartheta)$ where $N$ is an intermediate field $M \subseteq N \subseteq L$ and $N \xrightarrow{\vartheta} L$ a ring homomorphism such that $\vartheta\defon{M} = \sigma$ shows that $\sigma$ has an extension to an element of $\Aut(L / K)$. % TODO make this rigorous If $K \subseteq M \subseteq L$ is an intermediate field, then $L$ is normal over $M$. If $\sigma \in \forallut(M /K)$, an application of Zorn's lemma to the set of all $(N, \vartheta)$ where $N$ is an intermediate field $M \subseteq N \subseteq L$ and $N \xrightarrow{\vartheta} L$ a ring homomorphism such that $\vartheta\defon{M} = \sigma$ shows that $\sigma$ has an extension to an element of $\forallut(L / K)$. % TODO make this rigorous
If $M$ is normal over $K$, it is easily seen to be $\Aut(L / K)$ invariant. If $M$ is normal over $K$, it is easily seen to be $\forallut(L / K)$ invariant.
Thus $L^G$ is the union of $M^{\Aut(M / K)}$ over all intermediate fields which are finite and normal over $K$, and it is sufficient to show the proposition for finite normal extensions $L / K$. Thus $L^G$ is the union of $M^{\forallut(M / K)}$ over all intermediate fields which are finite and normal over $K$, and it is sufficient to show the proposition for finite normal extensions $L / K$.
\begin{itemize} \begin{itemize}
\item Characteristic $0$: The extension is normal, hence Galois, and the assertion follows from Galois theory. \item Characteristic $0$: The extension is normal, hence Galois, and the assertion follows from Galois theory.
@ -1468,11 +1468,11 @@ Recall the definition of a normal field extension in the case of finite field ex
We have $\cO_{\Q} = \Z$ by the proposiiton. We have $\cO_{\Q} = \Z$ by the proposiiton.
\end{remark} \end{remark}
\subsubsection{Action of \texorpdfstring{$\Aut(L / K)$}{Aut(L / K)} on prime ideals of a normal ring extension} \subsubsection{Action of \texorpdfstring{$\forallut(L / K)$}{Aut(L / K)} on prime ideals of a normal ring extension}
\begin{theorem}\label{autonprime} \begin{theorem}\label{autonprime}
Let $A$ be a normal domain, $L$ a normal field extension of $K \coloneqq Q(A)$, $B$ the integral closure of $A$ in $L$ and $\fp \in \Spec A$. Let $A$ be a normal domain, $L$ a normal field extension of $K \coloneqq Q(A)$, $B$ the integral closure of $A$ in $L$ and $\fp \in \Spec A$.
Then $G \coloneqq \Aut(L / K)$ transitively acts on $\{\fq \in \Spec B | \fq \cap A = \fp\}$. Then $G \coloneqq \forallut(L / K)$ transitively acts on $\{\fq \in \Spec B | \fq \cap A = \fp\}$.
\end{theorem} \end{theorem}
@ -1487,7 +1487,7 @@ Recall the definition of a normal field extension in the case of finite field ex
As $A$ is normal, we have $y^k \in K \cap B = A$. As $A$ is normal, we have $y^k \in K \cap B = A$.
Thus $y^k \in (A \cap \fq) \setminus (A \cap \fr) = \fp \setminus \fp = \emptyset \lightning$. Thus $y^k \in (A \cap \fq) \setminus (A \cap \fr) = \fp \setminus \fp = \emptyset \lightning$.
If $L / K$ is not finite, one applies Zorn's lemma to the poset of pairs $(M, \sigma)$ where $M$ is an intermediate field and $\sigma \in \Aut(M / K)$ such that $\sigma(\fr \cap M) = \fq \cap M$. If $L / K$ is not finite, one applies Zorn's lemma to the poset of pairs $(M, \sigma)$ where $M$ is an intermediate field and $\sigma \in \forallut(M / K)$ such that $\sigma(\fr \cap M) = \fq \cap M$.
\end{proof} \end{proof}
\begin{remark} \begin{remark}
@ -1517,7 +1517,7 @@ Recall the definition of a normal field extension in the case of finite field ex
\begin{subproof} \begin{subproof}
Let $\fp \subseteq \tilde \fp$ be an inclusion of prime ideals of $A$ and $\tilde \fr \in \Spec C$ with $\tilde \fr \cap A = \tilde \fp$. Let $\fp \subseteq \tilde \fp$ be an inclusion of prime ideals of $A$ and $\tilde \fr \in \Spec C$ with $\tilde \fr \cap A = \tilde \fp$.
By going-up for integral ring extensions (\ref{cohenseidenberg}), $\Spec C \xrightarrow{\cdot \cap A} \Spec A$ is surjectiv. Thus there is $\fr' \in \Spec C$ such that $\fr' \cap A = \fp$. By going up for $C / A$ there is $\tilde \fr' \in \Spec C$ with $\tilde \fr' \cap A = \tilde \fp, \fr' \subseteq \tilde \fr'$. By going-up for integral ring extensions (\ref{cohenseidenberg}), $\Spec C \xrightarrow{\cdot \cap A} \Spec A$ is surjectiv. Thus there is $\fr' \in \Spec C$ such that $\fr' \cap A = \fp$. By going up for $C / A$ there is $\tilde \fr' \in \Spec C$ with $\tilde \fr' \cap A = \tilde \fp, \fr' \subseteq \tilde \fr'$.
By the theorem about the action of the automorphism group on prime ideals of a normal ring extension (\ref{autonprime}) there exists a $\sigma \in \Aut(L / Q(A))$ with $\sigma(\tilde \fr') = \tilde \fr$. Then $\fr \coloneqq \sigma(\fr')$ satisfies $\fr \subseteq \tilde \fr$ and $\fr \cap A = \fp$. By the theorem about the action of the automorphism group on prime ideals of a normal ring extension (\ref{autonprime}) there exists a $\sigma \in \forallut(L / Q(A))$ with $\sigma(\tilde \fr') = \tilde \fr$. Then $\fr \coloneqq \sigma(\fr')$ satisfies $\fr \subseteq \tilde \fr$ and $\fr \cap A = \fp$.
\end{subproof} \end{subproof}
If $\fp \subseteq \tilde \fp$ is an inclusion of elements of $\Spec A$ and $\tilde \fq \in \Spec B$ with $\tilde \fp \cap A = \tilde \fp$, by the surjectivity of $\Spec C \xrightarrow{\cdot \cap B} \Spec B$ (\ref{cohenseidenberg}) there is $\tilde \fr \in \Spec C$ with $\tilde \fr \cap B = \fq$. If $\fp \subseteq \tilde \fp$ is an inclusion of elements of $\Spec A$ and $\tilde \fq \in \Spec B$ with $\tilde \fp \cap A = \tilde \fp$, by the surjectivity of $\Spec C \xrightarrow{\cdot \cap B} \Spec B$ (\ref{cohenseidenberg}) there is $\tilde \fr \in \Spec C$ with $\tilde \fr \cap B = \fq$.
By going-down for $C / A$, there is $\fr \in \Spec C$ with $\fr \subseteq \tilde \fr$ and $\fr \cap A = \fp$. By going-down for $C / A$, there is $\fr \in \Spec C$ with $\fr \subseteq \tilde \fr$ and $\fr \cap A = \fp$.
@ -1889,7 +1889,7 @@ Let $R = \mathfrak{k}[X_1,\ldots,X_n]$ and $I \subseteq R$ an ideal.
\subsection{The Jacobson radical}\limrel \subsection{The Jacobson radical}\limrel
\begin{proposition} \begin{proposition}
For a ring $A, \bigcap_{\mathfrak{m} \in \mSpec A} \mathfrak{m} = \{a \in A | \A x \in A ~ 1 - ax \in A^{\times }\} \text{\reflectbox{$\coloneqq$}} \rad(A)$, the \vocab{Jacobson radical} of $A$. For a ring $A, \bigcap_{\mathfrak{m} \in \mSpec A} \mathfrak{m} = \{a \in A | \forall x \in A ~ 1 - ax \in A^{\times }\} \text{\reflectbox{$\coloneqq$}} \rad(A)$, the \vocab{Jacobson radical} of $A$.
\end{proposition} \end{proposition}
\begin{proof} \begin{proof}
Suppose $\mathfrak{m} \in \mSpec A$ and $a \in A \setminus \mathfrak{m}$. Then $a \mod \mathfrak{m} \neq 0$ and $A / \mathfrak{m}$ is a field. Hence $a \mod \mathfrak{m}$ has an inverse $x \mod \mathfrak{m}$. Suppose $\mathfrak{m} \in \mSpec A$ and $a \in A \setminus \mathfrak{m}$. Then $a \mod \mathfrak{m} \neq 0$ and $A / \mathfrak{m}$ is a field. Hence $a \mod \mathfrak{m}$ has an inverse $x \mod \mathfrak{m}$.
@ -1953,7 +1953,7 @@ Let $\mathfrak{l}$ be any field.
We call the $r_d$ the \vocab{homogeneous components} of $r$. We call the $r_d$ the \vocab{homogeneous components} of $r$.
An ideal $I \subseteq A$ is called \vocab{homogeneous} if $r \in I \implies \A d \in \bI ~ r_d \in I_d$ where $I_d \coloneqq I \cap A_d$. An ideal $I \subseteq A$ is called \vocab{homogeneous} if $r \in I \implies \forall d \in \bI ~ r_d \in I_d$ where $I_d \coloneqq I \cap A_d$.
By a \vocab{graded ring} we understand an $\N$-graded ring. Tin this case, $A_{+} \coloneqq \bigoplus_{d=1}^{\infty} A_d = \{r \in A | r_0 = 0\} $ is called the \vocab{augmentation ideal} of $A$. By a \vocab{graded ring} we understand an $\N$-graded ring. Tin this case, $A_{+} \coloneqq \bigoplus_{d=1}^{\infty} A_d = \{r \in A | r_0 = 0\} $ is called the \vocab{augmentation ideal} of $A$.
\end{definition} \end{definition}
@ -2036,7 +2036,7 @@ Let $\mathfrak{l}$ be any field.
\begin{definition} \begin{definition}
Let $I \subseteq A = \mathfrak{k}[X_0,\ldots,X_n]$ be a homogeneous ideal. Let $I \subseteq A = \mathfrak{k}[X_0,\ldots,X_n]$ be a homogeneous ideal.
Let $\Vp(I) \coloneqq \{[x_0,\ldots,_n] \in \bP^n | \A f \in I ~ f(x_0,\ldots,x_n) = 0\}$ Let $\Vp(I) \coloneqq \{[x_0,\ldots,_n] \in \bP^n | \forall f \in I ~ f(x_0,\ldots,x_n) = 0\}$
As $I$ is homogeneous, it is sufficient to impose this condition for the homogeneous elements $f \in I$. As $I$ is homogeneous, it is sufficient to impose this condition for the homogeneous elements $f \in I$.
Because $A$ is Noetherian, $I$ can finitely generated by homogeneous elements $(f_i)_{i=1}^k$ and $\Vp(I)=\bigcap_{i=1}^k \Vp(f_i)$ as in \ref{ztoppn}. Because $A$ is Noetherian, $I$ can finitely generated by homogeneous elements $(f_i)_{i=1}^k$ and $\Vp(I)=\bigcap_{i=1}^k \Vp(f_i)$ as in \ref{ztoppn}.
Conversely, if the homogeneous $f_i$ are given, then $I = \langle f_1,\ldots,f_k \rangle_A$ is homogeneous. Conversely, if the homogeneous $f_i$ are given, then $I = \langle f_1,\ldots,f_k \rangle_A$ is homogeneous.
@ -2471,7 +2471,7 @@ The following is somewhat harder than in the affine case:
\item The category of sets. \item The category of sets.
\item The category of groups. \item The category of groups.
\item The category of rings. \item The category of rings.
\item If $R$ is a ring, the category of $R$-modules and the category $\Alg_R$ of $R$-algebras \item If $R$ is a ring, the category of $R$-modules and the category $\foralllg_R$ of $R$-algebras
\item The category of topological spaces \item The category of topological spaces
\item The category $\Var_\mathfrak{k}$ of varieties over $\mathfrak{k}$ (see \ref{defvariety}) \item The category $\Var_\mathfrak{k}$ of varieties over $\mathfrak{k}$ (see \ref{defvariety})
\item If $\cA$ is a category, then the \vocab{opposite category} or \vocab{dual category} is defined by $\Ob(\cA\op) = \Ob(\cA)$ and $\Hom_{\cA\op}(X,Y) = \Hom_\cA(Y,X)$. \item If $\cA$ is a category, then the \vocab{opposite category} or \vocab{dual category} is defined by $\Ob(\cA\op) = \Ob(\cA)$ and $\Hom_{\cA\op}(X,Y) = \Hom_\cA(Y,X)$.
@ -2488,7 +2488,7 @@ The following is somewhat harder than in the affine case:
\item The category of abelian groups is a full subcategory of the category of groups. \item The category of abelian groups is a full subcategory of the category of groups.
It can be identified with the category of $\Z$-modules. It can be identified with the category of $\Z$-modules.
\item The category of finitely generated $R$-modules as a full subcategory of the category of $R$-modules. \item The category of finitely generated $R$-modules as a full subcategory of the category of $R$-modules.
\item The category of $R$-algebras of finite type as a full subcategory of $\Alg_R$. \item The category of $R$-algebras of finite type as a full subcategory of $\foralllg_R$.
\item The category of affine varieties over $\mathfrak{k}$ as a full subcategory of the category of varieties over $\mathfrak{k}$. \item The category of affine varieties over $\mathfrak{k}$ as a full subcategory of the category of varieties over $\mathfrak{k}$.
\end{itemize} \end{itemize}
\end{example} \end{example}
@ -2569,17 +2569,17 @@ The following is somewhat harder than in the affine case:
\begin{itemize} \begin{itemize}
\item Let $X,Y$ be varieties over $\mathfrak{k}$. Then the map \item Let $X,Y$ be varieties over $\mathfrak{k}$. Then the map
\begin{align} \begin{align}
\phi: \Hom_{\Var_\mathfrak{k}}(X,Y) &\longrightarrow \Hom_{\Alg_\mathfrak{k}}(\cO_Y(Y), \cO_X(X)) \\ \phi: \Hom_{\Var_\mathfrak{k}}(X,Y) &\longrightarrow \Hom_{\foralllg_\mathfrak{k}}(\cO_Y(Y), \cO_X(X)) \\
(X \xrightarrow{f} Y) &\longmapsto (\cO_Y(Y) \xrightarrow{f\st} \cO_X(X)) (X \xrightarrow{f} Y) &\longmapsto (\cO_Y(Y) \xrightarrow{f\st} \cO_X(X))
\end{align} \end{align}
is injective when $Y$ is quasi-affine and bijective when $Y$ is affine. is injective when $Y$ is quasi-affine and bijective when $Y$ is affine.
\item The contravariant functor \item The contravariant functor
\begin{align} \begin{align}
F: \Var_\mathfrak{k} &\longrightarrow \Alg_\mathfrak{k} \\ F: \Var_\mathfrak{k} &\longrightarrow \foralllg_\mathfrak{k} \\
X &\longmapsto \cO_X(X)\\ X &\longmapsto \cO_X(X)\\
(X\xrightarrow{f} Y) &\longmapsto (\cO_X(X) \xrightarrow{f\st} \cO_Y(Y)) (X\xrightarrow{f} Y) &\longmapsto (\cO_X(X) \xrightarrow{f\st} \cO_Y(Y))
\end{align} \end{align}
restricts to an equivalence of categories between the category of affine varieties over $\mathfrak{k}$ and the full subcategory $\cA$ of $\Alg_\mathfrak{k}$, restricts to an equivalence of categories between the category of affine varieties over $\mathfrak{k}$ and the full subcategory $\cA$ of $\foralllg_\mathfrak{k}$,
having the $\mathfrak{k}$-algebras $A$ of finite type with $\nil A = \{0\} $ as objects. having the $\mathfrak{k}$-algebras $A$ of finite type with $\nil A = \{0\} $ as objects.
\end{itemize} \end{itemize}
\end{proposition} \end{proposition}
@ -2612,7 +2612,7 @@ The following is somewhat harder than in the affine case:
$f$ is a morphism in $\Var_\mathfrak{k}$ $f$ is a morphism in $\Var_\mathfrak{k}$
\end{claim} \end{claim}
\begin{subproof} \begin{subproof}
For open $\Omega \subseteq Y, U = f^{-1}(\Omega) = \{x \in X | \A \lambda \in J ~ (\phi(\lambda))(x) \neq 0\}$ is open in $X$, where $Y \setminus \Omega = V(J)$. For open $\Omega \subseteq Y, U = f^{-1}(\Omega) = \{x \in X | \forall \lambda \in J ~ (\phi(\lambda))(x) \neq 0\}$ is open in $X$, where $Y \setminus \Omega = V(J)$.
If $\lambda \in \cO_Y(\Omega)$ and $x \in U$, then $f(x)$ has a neighbourhood $V$ such that there are $a,b \in R$ with $\lambda(v) = \frac{a(v)}{b(v)}$ and $b(v) \neq 0$ for all $v \in V$. If $\lambda \in \cO_Y(\Omega)$ and $x \in U$, then $f(x)$ has a neighbourhood $V$ such that there are $a,b \in R$ with $\lambda(v) = \frac{a(v)}{b(v)}$ and $b(v) \neq 0$ for all $v \in V$.
Let $W \coloneqq f^{-1}(V)$. Then $\alpha \coloneqq \phi(a)\defon{W} \in \cO_X(W)$, $\beta \coloneqq \phi(b)\defon{W} \in \cO_X(W)$. Let $W \coloneqq f^{-1}(V)$. Then $\alpha \coloneqq \phi(a)\defon{W} \in \cO_X(W)$, $\beta \coloneqq \phi(b)\defon{W} \in \cO_X(W)$.
By the second part of \ref{localinverse} $\beta \in \cO_X(W)^{\times}$ and $f\st(\lambda)\defon{W} = \frac{\alpha}{\beta} \in \cO_X(W)$. By the second part of \ref{localinverse} $\beta \in \cO_X(W)^{\times}$ and $f\st(\lambda)\defon{W} = \frac{\alpha}{\beta} \in \cO_X(W)$.
@ -2636,7 +2636,7 @@ The following is somewhat harder than in the affine case:
\end{proof} \end{proof}
\begin{remark} \begin{remark}
Note that giving a contravariant functor $\cC \to \cD$ is equivalent to giving a functor $\cC \to \cD\op$. We have thus shown that the category of affine varieties is equivalent to $\cA\op$, where $\cA \subsetneq \Alg_\mathfrak{k}$ is the full subcategory of $\mathfrak{k}$-algebras $A$ of finite type with $\nil(A) = \{0\}$. Note that giving a contravariant functor $\cC \to \cD$ is equivalent to giving a functor $\cC \to \cD\op$. We have thus shown that the category of affine varieties is equivalent to $\cA\op$, where $\cA \subsetneq \foralllg_\mathfrak{k}$ is the full subcategory of $\mathfrak{k}$-algebras $A$ of finite type with $\nil(A) = \{0\}$.
\end{remark} \end{remark}
\subsubsection{Affine open subsets are a topology base} \subsubsection{Affine open subsets are a topology base}
@ -2904,8 +2904,8 @@ $\dim Y \ge \trdeg(\mathfrak{k}(Y) / \mathfrak{k})$: Noether normalization. Suba
% TODO prime avoidance % TODO prime avoidance
Action of $\Aut(L/K)$ on prime ideals of a normal ring extension. $A$ normal domain, $L / Q(A)$ normal field extension, $B$ int closure of $A$ in $L$, $\fp \in \Spec A$. Action of $\forallut(L/K)$ on prime ideals of a normal ring extension. $A$ normal domain, $L / Q(A)$ normal field extension, $B$ int closure of $A$ in $L$, $\fp \in \Spec A$.
Then $\Aut(L / K)$ transitively acts on $\{\fq \in \Spec B | \fq \cap A = \fp\}$ : Then $\forallut(L / K)$ transitively acts on $\{\fq \in \Spec B | \fq \cap A = \fp\}$ :
\begin{itemize} \begin{itemize}
\item $\fq, \fr \in \Spec B$ lying over $\fp$. \item $\fq, \fr \in \Spec B$ lying over $\fp$.
@ -2914,7 +2914,7 @@ Then $\Aut(L / K)$ transitively acts on $\{\fq \in \Spec B | \fq \cap A = \fp\}$
\item $y = \prod_{\sigma \in G} \sigma(x) \in \fq \setminus \fr$ ($\fr$ prime ideal) \item $y = \prod_{\sigma \in G} \sigma(x) \in \fq \setminus \fr$ ($\fr$ prime ideal)
\item $\exists k \in \N$ s.t. $y^k \in K$ ($y \in L^G$) \item $\exists k \in \N$ s.t. $y^k \in K$ ($y \in L^G$)
\item $y^k \in K \cap B = A $ ($A$ normal). Thus $y^k \in (A \cap \fq) \setminus (A \cap \fr) = \fp \setminus \fp$. \item $y^k \in K \cap B = A $ ($A$ normal). Thus $y^k \in (A \cap \fq) \setminus (A \cap \fr) = \fp \setminus \fp$.
\item $L / K$ infinite: Apply Zorn to pairs $(M, \sigma)$ where $K \subseteq M \subseteq L$ and $\sigma \in \Aut(M /K)$ s.t. $\sigma(\fr \cap M) = \fq \cap M$. \item $L / K$ infinite: Apply Zorn to pairs $(M, \sigma)$ where $K \subseteq M \subseteq L$ and $\sigma \in \forallut(M /K)$ s.t. $\sigma(\fr \cap M) = \fq \cap M$.
\end{itemize} \end{itemize}

View File

@ -2,6 +2,7 @@
\RequirePackage{mkessler-math} \RequirePackage{mkessler-math}
\RequirePackage{mkessler-refproof}
\RequirePackage[number in = section]{fancythm} \RequirePackage[number in = section]{fancythm}
\RequirePackage{hyperref} \RequirePackage{hyperref}