2022-02-16 02:31:15 +01:00
\subsection { The Nullstellensatz} %LECTURE 1
2022-02-16 05:19:03 +01:00
Let $ \mathfrak { k } $ be a field, $ R \coloneqq
\mathfrak { k} [X_ 1,\ldots ,X_ n], I
\subseteq R$ an ideal.
2022-02-16 02:31:15 +01:00
\begin { definition} [zero]
2022-02-16 05:19:03 +01:00
$ x \in \mathfrak { k } ^ n $ is \vocab [Ideal!zero] { a zero of $ I $ }
if $ \forall x \in I: P ( x ) = 0 $ .
Let $ \Va ( I ) $ denote the set of zeros if $ I $ in
$ \mathfrak { k } ^ n $ .
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
The \vocab [Ideal!
zero]{ zero in a field extension $ \mathfrak { i } $ of $ \mathfrak { k } $ } is defined similarly.
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { remark} [Set of zeros and generators]
2022-02-16 05:19:03 +01:00
Let $ I $ be generated by $ S $ .
Then $ \{ x \in R | \forall s \in S: s ( x ) = 0 \} = \Va ( I ) $ .
Thus zero sets of ideals correspond to solutions sets to systems of polynomial
equations.
If $ S, \tilde { S } $ generate the same ideal $ I $ they have the same
set of
solutions.
Therefore we only consider zero sets of ideals.
2022-02-16 02:31:15 +01:00
\end { remark}
2022-02-16 05:19:03 +01:00
\begin { theorem} [Hilbert's Nullstellensatz (1)]
\label { hns1}
If $ \mathfrak { k } $ is algebraically closed and $ I \subsetneq R $ a
proper ideal,
then $ I $ has a zero in $ \mathfrak { k } ^ n $ .
2022-02-16 02:31:15 +01:00
\end { theorem}
\begin { remark}
2022-02-16 05:19:03 +01:00
Will be shown later (see proof of
\ref { hns1b} ).
Trivial if $ n = 1 $ : $ R $ is a PID, thus $ I = pR $ for some $ p \in R $ .
Since $ I \neq R $ $ p = 0 $ or $ P $ is non-constant.
$ \mathfrak { k } $ algebraically closed $ \leadsto $ there exists a zero of
$ p $ .\\
If $ \mathfrak { k } $ is not algebraically closed and $ n > 0 $ , the
theorem fails
(consider $ I = p ( X _ 1 ) R $ ).
2022-02-16 02:31:15 +01:00
\end { remark}
Equivalent\footnote { used in a vague sense here} formulation:
2022-02-16 05:19:03 +01:00
\begin { theorem} [Hilbert's Nullstellensatz (2)]
\label { hns2} Let $ L / K $ be an
arbitrary field extension.
Then $ L / K $ is a finite field extension ($ \dim _ K L < \infty $ ) iff $ L $ is a
$ K $ -algebra of finite type.
2022-02-16 02:31:15 +01:00
\end { theorem}
\begin { proof}
\begin { itemize}
2022-02-16 05:19:03 +01:00
\item [$\implies$]
If $ ( l _ i ) _ { i = 1 } ^ { m } $ is a base of $ L $ as a
$ K $ -vector space, then $ L $ is generated by the $ l _ i $ as a $ K $ -algebra.
\item [$\impliedby$ ]
Apply the Noether normalization theorem (
\ref { noenort} ) to $ A = L $ .
This yields an injective ring homomorphism $ \ev _ a:
K[X_ 1,\ldots ,X_ n] \to A$
such that $ A $ is finite over the image of $ \ev _ a $ .
By the fact about integrality and fields (
\ref { fintaf} ), the
isomorphic image
of $ \ev _ a $ is a field.
Thus $ K [ X _ 1 , \ldots , X _ n ] $ is a field $ \implies n = 0 $ .
Thus $ L / K $ is a finite ring extension, hence a finite field extension.
2022-02-16 02:31:15 +01:00
\end { itemize}
\end { proof}
\begin { remark}
2022-02-16 05:19:03 +01:00
We will see several additional proofs of this theorem.
See
\ref { hns2unc} and
\ref { rfuncnft} .
2022-02-16 02:31:15 +01:00
All will be accepted in the exam.
2022-02-16 05:19:03 +01:00
\ref { hns3} and
\ref { hnsp} are closely related.
2022-02-16 02:31:15 +01:00
\end { remark}
2022-02-16 05:19:03 +01:00
\begin { theorem} [Hilbert's Nullstellensatz (1b)]
\label { hns1b}
Let $ \mathfrak { l } $ be a field and $ I \subset R =
\mathfrak { l} [X_ 1,\ldots ,X_ m]$
a proper ideal.
Then there are a finite field extension $ \mathfrak { i } $ of
$ \mathfrak { l } $ and a
zero of $ I $ in $ \mathfrak { i } ^ m $ .
2022-02-16 02:31:15 +01:00
\end { theorem}
2022-02-16 05:19:03 +01:00
\begin { proof}
(HNS2 (
\ref { hns2} ) $ \implies $ HNS1b (
\ref { hns1b} ))
$ I \subseteq \mathfrak { m } $ for some maximal ideal. $ R /
\mathfrak { m} $ is a field, since $ \mathfrak { m} $ is maximal.
$ R / \mathfrak { m } $ is of finite type, since the images of the $ X _ i $
generate it as a $ \mathfrak { l } $ -algebra.
There are thus a field extension $ \mathfrak { i } /
\mathfrak { l} $ and an
isomorphism $ R / \mathfrak { m } \xrightarrow { \iota }
\mathfrak { i} $ of
$ \mathfrak { l } $ -algebras.
By HNS2 (
\ref { hns2} ), $ \mathfrak { i } /
\mathfrak { l} $ is a finite field
extension.
2022-02-16 02:31:15 +01:00
Let $ x _ i \coloneqq \iota ( X _ i \mod \mathfrak { m } ) $ .
\[
P(x_ 1,\ldots ,x_ m) = \iota (P \mod \mathfrak { m} )
2022-02-16 05:19:03 +01:00
\]
Both sides are morphisms $ R \to \mathfrak { i } $ of
$ \mathfrak { l } $ -algebras.
For for $ P = X _ i $ the equality is trivial.
It follows in general, since the $ X _ i $ generate $ R $ as a
$ \mathfrak { l } $ -algebra.
Thus $ ( x _ 1 , \ldots ,x _ m ) $ is a zero of $ I $ (since $ P \mod \mathfrak { m }
= 0$ for
$ P \in I \subseteq \mathfrak { m } $ ).
HNS1 (
\ref { hns1} ) can easily be derived from HNS1b.
2022-02-16 02:31:15 +01:00
\end { proof}
\subsubsection { Nullstellensatz for uncountable fields} % from lecture 5 Yet another proof of the Nullstellensatz
2022-02-16 05:19:03 +01:00
The following proof of the Nullstellensatz only works for uncountable fields,
but will be accepted in the exam.
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
\begin { lemma}
\label { dimrfunc}
2022-02-16 02:31:15 +01:00
If $ K $ is an uncountable field, then $ \dim _ K K ( T ) $ is uncountable.
\end { lemma}
\begin { proof}
2022-02-16 05:19:03 +01:00
We will show, that $ S \coloneqq \left \{ \frac { 1 } { T - \kappa } | \kappa \in
K\right \} $ is $ K$ - linearly independent.
It follows that $ \dim _ K K ( T ) \ge \# S > \aleph _ 0 $ .
Suppose
$ ( x _ { \kappa } ) _ { \kappa \in K } $ is a
selection of coefficients from $ K $
such that $ I \coloneqq \{ \kappa \in K | x _ { \kappa } \neq 0 \}
$ is finite and
2022-02-16 02:31:15 +01:00
\[
g \coloneqq \sum _ { \kappa \in K} \frac { x_ \kappa } { T-\kappa } = 0
\]
2022-02-16 05:19:03 +01:00
Let $ d
\coloneqq \prod _ { \kappa \in I} (T - \kappa ) $ .
Then for $ \lambda \in I $ we have
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
0 = (dg)(\lambda ) = x_ \lambda \prod _ { \kappa
\in I \setminus \{ \lambda \} } (\lambda - \kappa )
\]
This is a contradiction as
$ x _ \lambda \neq 0 $ .
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { theorem} [Hilbert's Nullstellensatz for uncountable fields]
\label { hns2unc}
If $ K $ is an uncountable field and $ L / K $ a field extension and $ L $ of finite
type as a $ K $ -algebra, then this field extension is finite.
2022-02-16 02:31:15 +01:00
\end { theorem}
\begin { proof}
2022-02-16 05:19:03 +01:00
If $ ( x _ i ) _ { i = 1 } ^ { n } $ generate $ L $ as an
$ K $ -algebra, then the countably many
monomials $ x ^ { \alpha } = \prod _ { i = 1 } ^ { n }
x_ i^ { \alpha _ i} $ in the $ x_ i$ with
$ \alpha \in \N ^ n $ generate $ L $ as a $ K $ -vector space.
Thus $ \dim _ K L \le \aleph _ 0 $ and the same holds for any intermediate field $ K
\subseteq M \subseteq L$ .
If $ l \in L $ is transcendent over $ K $ and $ M = K ( l ) $ , then $ M \cong K ( T ) $ has
uncountable dimension by
\ref { dimrfunc} .
Thus $ L / K $ is algebraic, hence integral, hence finite
(
\ref { ftaiimplf} ).
2022-02-16 02:31:15 +01:00
\end { proof}
\subsection { The Zariski topology}
\subsubsection { Operations on ideals and \texorpdfstring { $ \Va \left ( I \right ) $ } { V(I)} }
2022-02-16 05:19:03 +01:00
Let $ R $ be a ring and $ I,J, I _ \lambda \subseteq R $ ideals, $ \lambda \in
\Lambda $ .
2022-02-16 02:31:15 +01:00
\begin { definition} [Radical, product and sum of ideals]
\[
2022-02-16 05:19:03 +01:00
\sqrt { I} \coloneqq \bigcap _ { n=0} ^ { \infty } \{ f \in R | f^ n \in
I\}
\]
2022-02-16 02:31:15 +01:00
\[
I \cdot J \coloneqq \langle \{ i \cdot j | i \in I , j \in J\} \rangle _ R
2022-02-16 05:19:03 +01:00
\]
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
\sum _ { \lambda \in \Lambda }
I_ \lambda \coloneqq \left \{ \sum _ { \lambda \in \Lambda '} i_ \lambda | \Lambda '
\subseteq \Lambda \text { finite} \right \}
\]
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { fact}
2022-02-16 05:19:03 +01:00
The
radical is an ideal in $ R $ and $ \sqrt { \sqrt { I } } =
\sqrt { I} $ .
\\
2022-02-16 02:31:15 +01:00
$ I \cdot J $ is an ideal.\\
2022-02-16 05:19:03 +01:00
$ \sum _ { \lambda \in \Lambda }
I_ \lambda $ coincides with the ideal generated by $ \bigcap _ { \lambda \in
\Lambda }
I_ \lambda $ in $ R$ .
\\
$ \bigcap _ { \lambda \in \Lambda }
I_ \lambda $ is an ideal.
2022-02-16 02:31:15 +01:00
\end { fact}
2022-02-16 05:19:03 +01:00
Let $ R = \mathfrak { k } [ X _ 1 , \ldots ,X _ n ] $ where $ \mathfrak { k } $ is an
algebraically
closed field.
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
\begin { fact}
\label { fvop}
Let $ I, J,
(I_ { \lambda } )_ { \lambda \in \Lambda } $ be
ideals in $ R $ .
$ \Lambda $ may be infinite.
2022-02-16 02:31:15 +01:00
\begin { enumerate} [A]
2022-02-16 05:19:03 +01:00
\item
$ \Va ( I ) = \Va ( \sqrt { I } ) $
\item
$ \sqrt { J } \subseteq \sqrt { I } \implies
\Va (I) \subseteq \Va (J)$
\item
$ \Va ( R ) = \emptyset , \Va ( \{ 0 \} = \mathfrak { k } ^ n $
\item
$ \Va ( I \cap J ) = \Va ( I \cdot J ) = \Va ( I ) \cup \Va ( J ) $
\item
$ \Va ( \sum _ { \lambda \in \Lambda }
I_ \lambda ) = \bigcap _ { \lambda \in \Lambda } \Va (I_ { \lambda } )$
2022-02-16 02:31:15 +01:00
\end { enumerate}
\end { fact}
\begin { proof}
2022-02-16 05:19:03 +01:00
\begin { enumerate}
\item [A-C]
trivial
\item [D]
$ I \cdot
J \subseteq I \cap J \subseteq I$ .
Thus $ \Va ( I ) \subseteq \Va ( I \cap J ) \subseteq
\Va (I \cdot J)$ .
By symmetry we have $ \Va ( I ) \cup \Va ( J )
\subseteq \Va (I \cap J) \subseteq \Va (I
\cdot J)$ .
Let $ x \not \in \Va ( I ) \cup \Va ( J ) $ .
Then there are $ f \in I, g \in J $ such that $ f ( x ) \neq 0 , g ( x ) \neq 0 $ thus
$ ( f \cdot g ) ( x ) \neq 0 \implies x \not \in \Va ( I \cdot J ) $ .
Therefore
\[
\Va (I) \cup \Va (J) \subseteq
\Va (I \cap J) \subseteq \Va (I \cdot
J) \subseteq
\Va (I) \cup \Va (J)
\]
\item [E]
$ I _ \lambda \subseteq \sum _ { \lambda
\in \Lambda } I_ \lambda \implies
\Va (\sum _ { \lambda \in \Lambda } I_ \lambda )
\subseteq \Va (I_ \lambda )$ .
Thus $ \Va ( \sum _ { \lambda \in \Lambda } I _ \lambda ) \subseteq \bigcap _ { \lambda \in
\Lambda }
\Va (I_ \lambda )$ .
On the other hand if $ f \in \sum _ { \lambda \in \Lambda } I _ \lambda $ we have $ f =
\sum _ { \lambda \in \Lambda } f_ \lambda $ .
Thus $ f $ vanishes on $ \bigcap _ { \lambda \in \Lambda } \Va ( I _ { \lambda } ) $ and we
have $ \bigcap _ { \lambda \in \Lambda } \Va ( I _ \lambda ) \subseteq
\Va (\sum _ { \lambda
\in \Lambda } I_ \lambda )$ .
\end { enumerate}
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { remark}
2022-02-16 05:19:03 +01:00
There is no similar way to describe $ \Va ( \bigcap _ { \lambda \in \Lambda }
I_ \lambda )$ in terms of the
$ \Va ( I _ { \lambda } ) $ when $ \Lambda $ is infinite.
For instance if $ n = 1 , I _ k \coloneqq X _ 1 ^ k R $ then
$ \bigcap _ { k = 0 } ^ \infty I _ k =
\{ 0\} $ but $ \bigcup _ { k=0} ^ { \infty } \Va (I_ k) = \{ 0\} $ .
2022-02-16 02:31:15 +01:00
\end { remark}
\subsubsection { Definition of the Zariski topology}
2022-02-16 05:19:03 +01:00
Let $ \mathfrak { k } $ be algebraically closed, $ R =
\mathfrak { k} [X_ 1,\ldots ,X_ n]$ .
\begin { corollary}
(of
\ref { fvop} )
There is a topology on $ \mathfrak { k } ^ n $ for which the set of closed
sets
coincides with the set $ \mathfrak { A } $ of subsets of the form
$ \Va \left ( I
\right ) $ for ideals $ I \subseteq R$ .
This topology is called the \vocab { Zariski-Topology}
2022-02-16 02:31:15 +01:00
\end { corollary}
2022-02-16 05:19:03 +01:00
\begin { example}
\label { zariskinothd} Let $ n = 1 $ .
Then $ R $ is a PID.
Hence every ideal is a principal ideal and the Zariski-closed subsets of
$ \mathfrak { k } $ are the subsets of the form $ \Va ( P ) $
for $ P \in R $ .
As $ \Va ( 0 ) = \mathfrak { k } $ and
$ \Va ( P ) $ finite for $ P \neq 0 $ and
$ \{ x _ 1 , \ldots ,x _ n \} = \Va ( \prod _ { i = 1 } ^ { n } ( T - x _ i ) ) $ the Zariski-closed subsets
of $ \mathfrak { k } $ are $ \mathfrak { k } $ and the finite
subsets.
2022-02-16 02:31:15 +01:00
Because $ \mathfrak { k } $ is infinite, this topology is not Hausdorff.
\end { example}
\subsubsection { Separation properties of topological spaces}
\begin { definition}
2022-02-16 05:19:03 +01:00
Let $ X $ be a topological space.
$ X $ satisfies the separation properties $ T _ { 0 - 2 } $ if for
any $ x \neq y \in X $
2022-02-16 02:31:15 +01:00
\begin { enumerate}
2022-02-16 05:19:03 +01:00
\item [$T_0$ ]
$ \exists U \subseteq X $ open such that $ |U \cap \{ x,y \} | = 1 $
\item [$T_1$ ]
$ \exists U \subseteq X $ open such that $ x \in U, y \not \in U $ .
\item [$T_2$ ]
There are disjoined open sets $ U, V \subseteq X $ such that $ x \in U, y \in V $ .
(Hausdorff)
2022-02-16 02:31:15 +01:00
\end { enumerate}
\end { definition}
\begin { remark}
2022-02-16 05:19:03 +01:00
Let $ x \sim y : \iff $ the open subsets of $ X $ containing $ x $ are precisely the
open subsets of $ X $ containing $ y $ .
Then $ T _ 0 $ holds iff $ x \sim y \implies x = y $ .
2022-02-16 02:31:15 +01:00
\end { remark}
\begin { fact}
$ T _ 0 \iff $ every point is closed.
\end { fact}
\begin { fact}
2022-02-16 05:19:03 +01:00
The Zariski topology on $ \mathfrak { k } ^ n $ is $ T _ 1 $ but for $ n \ge 1 $
not
Hausdorff.
For $ n \ge 1 $ the intersection of two non-empty open subsets of
$ \mathfrak { k } ^ n $ is always non-empty.
2022-02-16 02:31:15 +01:00
\end { fact}
\begin { proof}
2022-02-16 05:19:03 +01:00
$ \{ x \} $ is closed, as $ \{ x \} = V ( \Span { X _ 1 - x _ 1 , \ldots , X _ n - x _ n } _ R ) $ .
If $ A = V ( I ) , B = V ( J ) $ are two proper closed subsets of
$ \mathfrak { k } ^ n $ then
$ I \neq \{ 0 \} , J \neq \{ 0 \} $ and thus $ IJ \neq \{ 0 \} $ .
Therefore $ A \cup B = V ( IJ ) $ is a proper closed subset of
$ \mathfrak { k } ^ n $ .
2022-02-16 02:31:15 +01:00
\end { proof}
\subsubsection { Compactness properties of topological spaces}
Let $ X $ be a topological space.
\begin { definition} [Compact, quasi-compact]
2022-02-16 05:19:03 +01:00
$ X $ is called \vocab [Topological space!quasi-compact] { quasi-compact} if every open
covering of $ X $ has a finite subcovering.
It is called \vocab [Topological space!
compact]{ compact} , if it is quasi-compact and Hausdorff.
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { definition} [Noetherian topological spaces]
2022-02-16 05:19:03 +01:00
$ X $ is called \vocab { Noetherian} , if the
following equivalent conditions hold:
2022-02-16 02:31:15 +01:00
\begin { enumerate} [A]
2022-02-16 05:19:03 +01:00
\item
Every open subset of $ X $ is quasi-compact.
\item
Every descending sequence $ A _ 0 \supseteq A _ 1 \supseteq \ldots $ of closed
subsets of $ X $ stabilizes.
\item
Every non-empty set $ \mathcal { M } $ of closed subsets of $ X $ has a
$ \subseteq $ -minimal element.
2022-02-16 02:31:15 +01:00
\end { enumerate}
\end { definition}
2022-02-16 05:19:03 +01:00
\begin { proof}
\,
2022-02-16 02:31:15 +01:00
\begin { enumerate}
2022-02-16 05:19:03 +01:00
\item [A $\implies$ B]
Let $ A _ j $ be a descending chain of closed subsets.
Define $ A \coloneqq \bigcap _ { j = 0 } ^ { \infty } A _ j $ .
If A holds, the covering $ X \setminus A = \bigcup _ { j = 0 } ^ { \infty } ( X \setminus
A_ j)$ has a finite
subcovering.
\item [B $\implies$ C]
Suppose $ \mathcal { M } $ does not have a $ \subseteq $ -minimal element.
Using DC, one can construct a counterexample $ A _ 1 \subsetneq A _ 2 \supsetneq
\ldots $ to B.
\item [C $\implies$ A]
Let $ \bigcup _ { i \in I }
V_ i$ be an open covering of an open subset $ U \subseteq X$ .
By C, the set $ \mathcal { M } \coloneqq \{ X \setminus
\bigcup _ { i \in F} V_ i | F
\subseteq I \text { finite} \} $ has a $ \subseteq $ - minimal element.
2022-02-16 02:31:15 +01:00
\end { enumerate}
\end { proof}
2022-02-16 05:19:03 +01:00
\subsection { Another form of the Nullstellensatz and Noetherianness of
\texorpdfstring { $ \mathfrak { k } ^ n $ } { kn} }
Let $ \mathfrak { k } $ be algebraically closed, $ R =
\mathfrak { k} [X_ 1,\ldots ,X_ n]$ .
2022-02-16 02:31:15 +01:00
For $ f \in R $ let $ V ( f ) = V ( fR ) $ .
2022-02-16 05:19:03 +01:00
\begin { theorem} [Hilbert's Nullstellensatz (3)]
\label { hns3}
Let $ I \subseteq R $ be an ideal.
Then $ V ( I ) \subseteq V ( f ) $ iff $ f \in \sqrt { I } $ .
2022-02-16 02:31:15 +01:00
\end { theorem}
\begin { proof}
2022-02-16 05:19:03 +01:00
Suppose $ f $ vanishes on all zeros of $ I $ .
Let $ R' \coloneqq \mathfrak { k } [ X _ 1 , \ldots ,X _ n,T ] $ , $ g ( X _ 1 , \ldots ,X _ n,T )
\coloneqq 1 - T \cdot f(X_ 1,\ldots ,X_ n)$ and $ J \subseteq R'$ the ideal
generated by $ g $ and the elements of $ I $ (viewed as elements of $ R' $ which are
constant in the $ T $ -direction).
If $ f $ vanishes on all zeros of $ I $ , then $ J $ has no zeros in
$ \mathfrak { k } ^ { n + 1 } $ .
Thus there exist $ p _ i \in I, i = 1 , \ldots ,n, q _ i \in
\mathfrak { k} [X_ 1,\ldots ,X_ n,T], i = 1,\ldots ,n$ and $ q \in
\mathfrak { k} [X_ 1,\ldots ,X_ n,T]$ such that
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
1 = g \cdot q + \sum _ { i=1} ^ { n}
p_ { i} q_ i
2022-02-16 02:31:15 +01:00
\]
2022-02-16 05:19:03 +01:00
Formally substituting $ \frac { 1 } { f ( x _ 1 , \ldots ,x _ n ) } $ for $ Y $ , one
obtains:
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
1 = \sum _ { i=1} ^ { n}
p_ { i} \left (x_ 1,\ldots ,x_ n\right ) q_ i\left (
x_ 1,\ldots ,x_ n, \frac { 1} { f(x_ 1,\ldots ,x_ n)} \right )
\]
Multiplying by a
sufficient power of $ f $ , this yields an equation in $ R $ :
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
f^ d =
\sum _ { i=1} ^ { n} p_ { i} (x_ 1,\ldots ,_ n) \cdot
q_ i'(x_ 1,\ldots ,x_ n) \in I
\]
Thus $ f
\in \sqrt { I} $ .
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { corollary}
\label { antimonbij}
2022-02-16 02:31:15 +01:00
\begin { align}
2022-02-16 05:19:03 +01:00
f: \{ I \subseteq R | I \text { ideal} , I = \sqrt { I} \} & \longrightarrow \{ A \subseteq \mathfrak { k} ^ n | A \text { Zariski-closed} \} \\
I & \longmapsto V(I) \\
\{ f \in R | A \subseteq V(f)\} & \longmapsfrom A
2022-02-16 02:31:15 +01:00
\end { align}
is a $ \subseteq $ -antimonotonic bijection.
\end { corollary}
\begin { corollary}
The topological space $ \mathfrak { k } ^ n $ is Noetherian.
\end { corollary}
\begin { proof}
2022-02-16 05:19:03 +01:00
Because the map from
\ref { antimonbij} is antimonotonic, strictly
decreasing
chains of closed subsets of $ \mathfrak { k } ^ n $ are mapped to strictly
increasing
chains of ideals in $ R $ .
By the Basissatz (
\ref { basissatz} ), $ R $ is Noetherian.
2022-02-16 02:31:15 +01:00
\end { proof}
% Lecture 04
\subsection { Irreducible spaces}
Let $ X $ be a topological space.
\begin { definition}
2022-02-16 05:19:03 +01:00
$ X $ is called \vocab [Topological space!irreducible] { irreducible} , if $ X \neq \emptyset $ and the following
equivalent conditions hold:
2022-02-16 02:31:15 +01:00
\begin { enumerate} [A]
2022-02-16 05:19:03 +01:00
\item
Every open $ \emptyset \neq U \subseteq X $ is dense.
\item
The intersection of non-empty, open subsets $ U, V \subseteq X $ is non-empty.
\item
If $ A, B \subseteq X $ are closed, $ X = A \cup B $ then $ X = A $ or $ X = B $ .
\item
Every open subset of $ X $ is connected.
2022-02-16 02:31:15 +01:00
\end { enumerate}
\end { definition}
2022-02-16 05:19:03 +01:00
\begin { proof}
\,
2022-02-16 02:31:15 +01:00
\begin { itemize}
2022-02-16 05:19:03 +01:00
\item [$A \iff B$]
by definition of denseness.
\item [B $\iff$ C]
Let $ U \coloneqq X \setminus A, V \coloneqq X \setminus B $ .
\item [B $\implies$ D]
Suppose $ W $ is a non-connected open subset.
Then there exists a decomposition $ W = U \cup V $ into disjoint open subsets.
\item [D $\implies$ B]
If $ U,V \neq \emptyset $ are disjoint open subsets, then $ U \cup V $ is
non-connected.
2022-02-16 02:31:15 +01:00
\end { itemize}
\end { proof}
\begin { corollary}
Every irreducible topological space is connected.
\end { corollary}
\begin { example}
2022-02-16 05:19:03 +01:00
$ \mathfrak { k } ^ n $ is irreducible as shown in
\ref { zariskinothd} .
2022-02-16 02:31:15 +01:00
\end { example}
\begin { fact}
\begin { enumerate} [A]
2022-02-16 05:19:03 +01:00
\item
A single point is always irreducible.
\item
If $ X $ is Hausdorff then it is irreducible iff it has precisely one point.
\item
$ X $ is irreducible iff it cannot be written as a finite union of proper closed
subsets.
\item
$ X $ is irreducible iff any finite intersection of non-empty open subsets is
non-empty. ($ \bigcap \emptyset \coloneqq X $ )
2022-02-16 02:31:15 +01:00
\end { enumerate}
\end { fact}
\begin { proof}
\begin { enumerate}
2022-02-16 05:19:03 +01:00
\item [A,B]
trivial
\item [C]
$ \implies $ : Induction on the cardinality of the union. $ \impliedby $ : $ \bigcap
\emptyset = X$ is non - empty and any intersection of two non - empty open subsets
is non-empty.
\item [D]
Follows from C.
2022-02-16 02:31:15 +01:00
\end { enumerate}
\end { proof}
\subsubsection { Irreducible components}
\begin { fact}
2022-02-16 05:19:03 +01:00
If $ D \subseteq X $ is dense, then $ X $ is irreducible iff $ D $ is irreducible
with its induced topology.
2022-02-16 02:31:15 +01:00
\end { fact}
\begin { proof}
$ X = \emptyset $ iff $ D = \emptyset $ .
2022-02-16 05:19:03 +01:00
Suppose $ B $ is the union of its proper closed subsets $ A,B $ .
Then $ X = \overline { A } \cup \overline { B } $ .
These are proper closed subsets of $ X $ , as $ \overline { A } \cap D = A
\cap D$ ( by
closedness of $ D $ ) and thus $ \overline { A } \cap D \neq D $ .
On the other hand, if $ U $ and $ V $ are disjoint non-empty open subsets of $ X $ ,
then $ U \cap D $ and $ V \cap D $ are disjoint non-empty open subsets of $ D $ .
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { definition} [Irreducible subsets]
2022-02-16 05:19:03 +01:00
A subset $ Z \subseteq X $ is called
\vocab [Topological space!irreducible] { irreducible} if it is irreducible with its induced topology.
$ Z $ is called an \vocab { irreducible component} of $ X $ , if it is irreducible and if
every irreducible subset $ Z \subseteq Y \subseteq X $ coincides with $ Z $ .
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { corollary}
\begin { enumerate}
2022-02-16 05:19:03 +01:00
\item
$ Z \subseteq X $ is irreducible iff $ \overline { Z } \subseteq X $ is
irreducible.
\item
Every irreducible component of $ X $ is a closed subset of $ X $ .
2022-02-16 02:31:15 +01:00
\end { enumerate}
\end { corollary}
\begin { notation}
From now on, irreducible means irreducible and closed.
\end { notation}
\subsubsection { Decomposition into irreducible subsets}
\begin { proposition}
2022-02-16 05:19:03 +01:00
Let $ X $ be a Noetherian topological space.
Then $ X $ can be written as a finite union $ X = \bigcup _ { i = 1 } ^ n Z _ i $
of
irreducible closed subsets of $ X $ .
One may additionally assume that $ i \neq j \implies Z _ i \not \subseteq Z _ i $ .
With this minimality condition, $ n $ and the $ Z _ i $ are unique (up to
permutation) and $ \{ Z _ 1 , \ldots ,Z _ n \} $ is the set of irreducible components of
$ X $ .
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
% i = ic
2022-02-16 05:19:03 +01:00
Let $ \mathfrak { M } $ be the set of closed subsets of $ X $ which cannot
be
decomposed as a union of finitely many irreducible subsets.
Suppose $ \mathfrak { M } \neq \emptyset $ .
Then there exists a $ \subseteq $ -minimal $ Y \in \mathfrak { M } $ .
$ Y $ cannot be empty or irreducible.
Hence $ Y = A \cup B $ where $ A,B $ are proper closed subsets of $ Y $ .
By the minimality of $ Y $ , $ A $ and $ B $ can be written as a union of proper
closed subsets $ \lightning $ .
Let $ X = \bigcup _ { i = 1 } ^ n Z _ i $ , where there are no inclusions between
the
$ Z _ i $ .
If $ Y $ is an irreducible subsets of $ X $ , $ Y = \bigcup _ { i = 1 } ^ n ( Y \cap
Z_ i)$
and there exists $ 1 \le i \le n $ such that $ Y = Y \cap Z _ i $ .
Hence $ Y \subseteq Z _ i $ .
Thus the $ Z _ i $ are irreducible components.
Conversely, if $ Y $ is an irreducible component of $ X $ , $ Y \subseteq Z _ i $ for
some $ i $ and $ Y = Z _ i $ by the definition of irreducible component.
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { remark}
2022-02-16 05:19:03 +01:00
The proof of existence was an example of \vocab { Noetherian induction} : If $ E $
is an assertion about closed subsets of a Noetherian topological space $ X $ and
$ E $ holds for $ A $ if it holds for all proper subsets of $ A $ , then $ E ( A ) $ holds
for every closed subset $ A \subseteq X $ .
2022-02-16 02:31:15 +01:00
\end { remark}
2022-02-16 05:19:03 +01:00
\begin { proposition}
\label { bijiredprim}
By
\ref { antimonbij} there exists a bijection
2022-02-16 02:31:15 +01:00
\begin { align}
2022-02-16 05:19:03 +01:00
f: \{ I \subseteq R |
I \text { ideal} , I = \sqrt { I} \} & \longrightarrow \{ A \subseteq \mathfrak { k} ^ n
| A \text { Zariski-closed} \} \\ I & \longmapsto V(I)\\ \{ f \in R | A
\subseteq V(f)\} & \longmapsfrom A
2022-02-16 02:31:15 +01:00
\end { align}
2022-02-16 05:19:03 +01:00
Under this correspondence $ A \subseteq \mathfrak { k } ^ n $ is
irreducible iff $ I
\coloneqq f^ { -1} (A)$ is a prime ideal.
2022-02-16 02:31:15 +01:00
Moreover, $ \# A = 1 $ iff $ I $ is a maximal ideal.
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
By the Nullstellensatz (
\ref { hns1} ), $ A = \emptyset \iff I = R $ .
Suppose $ A = B \cup C $ is a decomposition into proper closed subsets $ A = V ( J ) ,
B = V(K)$ where $ J = \sqrt { J} .
K = \sqrt { K} $ .
Since $ A \neq B $ and $ A \neq C $ , there are $ f \in J \setminus I, g \in K
\setminus I$ .
$ fg $ vanishes on $ A = B \cup C $ .
By the Nullstellensatz (
\ref { hns3} ) $ fg \in
\sqrt { I} = I$ and $ I$ fails to be
prime.
On the other hand suppose that $ fg \in I, f \notin I, g \not \in I $ .
By the Nullstellensatz (
\ref { hns3} ) and $ I =
\sqrt { I} $ neither $ f$ nor $ g$
vanishes on all of $ A $ .
Thus $ ( A \cap V ( f ) ) \cup ( A \cap V ( g ) ) $ is a decomposition and $ A $ fails to be
irreducible.
The remaining assertion follows from the fact, that the bijection is
$ \subseteq $ -antimonotonic and thus maximal ideals correspond to minimal
irreducible closed subsets, which are the one-point subsets as
$ \mathfrak { k } ^ n $
is T$ { } _ 1 $ .
2022-02-16 02:31:15 +01:00
\end { proof}
\subsection { Krull dimension}
\begin { definition}
2022-02-16 05:19:03 +01:00
Let $ Z $ be an irreducible subset of the topological space $ X $ .
Let $ \codim ( Z,X ) $ be the maximum of the length $ n $ of strictly
increasing
chains $ Z \subseteq Z _ 0 \subsetneq Z _ 1 \subsetneq \ldots \subsetneq Z _ n $ of
irreducible closed subsets of $ X $ containing $ Z $ or $ \infty $ if such chains can
be found for arbitrary $ n $ .
Let
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
\dim X \coloneqq
\begin { cases}
- \infty & \text { if } X = \emptyset \\
\sup _ { \substack { Z \subseteq X \\ Z \text { irreducible} } } \codim (Z,X) &
\text { otherwise}
\end { cases}
\]
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { remark}
\begin { itemize}
2022-02-16 05:19:03 +01:00
\item
In the situation of the definition $ \overline { Z } $ is irreducible.
Hence $ \codim ( Z,X ) $ is well-defined and one may assume without
losing much
generality that $ Z $ is closed.
\item
Because a point is always irreducible, every non-empty topological space has an
irreducible subset and for $ X \neq \emptyset $ , $ \dim X $ is $ \infty $ or
$ \max _ { x \in X } \codim ( \{ x \} , X ) $ .
\item
Even for Noetherian $ X $ , it may happen that $ \codim ( Z,X ) = \infty $ .
\item
Even for if $ X $ is Noetherian and $ \codim ( Z,X ) $ is finite for all irreducible
subsets $ Z $ of $ X $ , $ \dim X $ may be infinite.
2022-02-16 02:31:15 +01:00
\end { itemize}
\end { remark}
\begin { fact}
If $ X = \{ x \} $ , then $ \dim X = 0 $ .
\end { fact}
\begin { fact}
2022-02-16 05:19:03 +01:00
For every $ x \in \mathfrak { k } $ , $ \codim ( \{ x \} , \mathfrak { k } ) = 1 $ .
The only other irreducible closed subset of $ \mathfrak { k } $ is
$ \mathfrak { k } $
itself, which has codimension zero.
Thus $ \dim \mathfrak { k } = 1 $ .
2022-02-16 02:31:15 +01:00
\end { fact}
\begin { fact}
2022-02-16 05:19:03 +01:00
Let $ Y \subseteq X $ be irreducible and $ U \subseteq X $ an open subset such that
$ U \cap Y \neq \emptyset $ .
Then we have a bijection
2022-02-16 02:31:15 +01:00
\begin { align}
2022-02-16 05:19:03 +01:00
f: \{ A \subseteq X | A \text {
irreducible, closed and } Y \subseteq A\} & \longrightarrow \{ B \subseteq U |
B \text { irreducible, closed and } Y \cap U \subseteq B\} \\ A & \longmapsto A
\cap U \\ \overline { B} & \longmapsfrom B
2022-02-16 02:31:15 +01:00
\end { align}
2022-02-16 05:19:03 +01:00
where $ \overline { B } $ denotes
the closure in $ X $ .
2022-02-16 02:31:15 +01:00
\end { fact}
\begin { proof}
2022-02-16 05:19:03 +01:00
If $ A $ is given and $ B = A \cap U $ , then $ B \neq \emptyset $ and B is open
hence (irreducibility of $ A $ ) dense in $ A $ , hence $ A =
\overline { B} $ .
The fact that $ B = \overline { B } \cap U $ is a general property of the
closure
operator.
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { corollary} [Locality of Krull codimension]
\label { lockrullcodim}
Let $ Y \subseteq X $ be irreducible and $ U \subseteq X $ an open subset such that
$ U \cap Y \neq \emptyset $ .
2022-02-16 02:31:15 +01:00
Then $ \codim ( Y,X ) = \codim ( Y \cap U, U ) $ .
\end { corollary}
\begin { fact}
2022-02-16 05:19:03 +01:00
Let $ Z \subseteq Y \subseteq X $ be irreducible closed subsets of the
topological space $ X $ .
Then
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
\codim (Z,Y) + \codim (Y,X) \le \codim (Z,X)
\tag { CD+}
\label { eq:cdp}
2022-02-16 02:31:15 +01:00
\]
\end { fact}
\begin { proof}
2022-02-16 05:19:03 +01:00
A chain of irreducible closed subsets between $ Z $ and
$ Y $ and a chain of irreducible closed between $ Y $ and $ X $ can be spliced
together.
2022-02-16 02:31:15 +01:00
\end { proof}
Taking the supremum over all $ Z $ we obtain:
\begin { fact}
2022-02-16 05:19:03 +01:00
If $ Y $ is an
irreducible closed subset of the topological space $ X $ , then
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
\dim (Y) +
\codim (Y,X) \le \dim (X)
\tag { D+}
\label { eq:dp}
\]
2022-02-16 02:31:15 +01:00
\end { fact}
2022-02-16 05:19:03 +01:00
In general, these
inequalities may be strict.
2022-02-16 02:31:15 +01:00
\begin { definition} [Catenary topological spaces]
2022-02-16 05:19:03 +01:00
A topological space $ T $ is called
\vocab [Topological space!catenary] { catenary} if equality holds in \eqref { eq:cdp} whenever
$ X $ is an irreducible closed subset of $ T $ .
2022-02-16 02:31:15 +01:00
\end { definition}
\subsubsection { Krull dimension of \texorpdfstring { $ \mathfrak { k } ^ n $ } { kn} } % from lecture 04
2022-02-16 05:19:03 +01:00
\begin { theorem}
\label { kdimkn}
$ \dim \mathfrak { k } ^ n = n $ and $ \mathfrak { k } ^ n $ is
catenary.
Moreover, if $ X $ is an irreducible closed subset of
$ \mathfrak { k } ^ n $ , then
equality occurs in \eqref { eq:dp} .
2022-02-16 02:31:15 +01:00
\end { theorem}
\begin { proof}
Considering
\[
2022-02-16 05:19:03 +01:00
\{ 0\} \subsetneq \mathfrak { k} \times \{ 0\} \subsetneq
\mathfrak { k} ^ 2 \times \{ 0\} \subsetneq \ldots \subsetneq
\mathfrak { k} ^ n
2022-02-16 02:31:15 +01:00
\]
2022-02-16 05:19:03 +01:00
it
is clear that $ \codim ( \{ 0 \} , \mathfrak { k } ^ n ) \ge n $ .Translation by $ x \in
\mathfrak { k} ^ n$ gives us $ \codim (\{ x\} , \mathfrak { k} ^ n) \ge n$ .
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
The opposite inequality follows from \ref { upperbounddim} ($ Z =
\mathfrak { k} ^ n$
$ \dim \mathfrak { k } ^ n \le \trdeg ( \mathfrak { K } ( Z ) / \mathfrak { k } ) =
\trdeg (Q(\mathfrak { k} [X_ 1,\ldots ,X_ n]) / \mathfrak { k} ) = n$ ) .
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
The theorem is a special case of
\ref { htandtrdeg} .
% DIMT
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { lemma}
\label { ufdprimeideal}
2022-02-16 02:31:15 +01:00
Every non-zero prime ideal $ \fp $ of a UFD $ R $ contains a prime element.
\end { lemma}
\begin { proof}
2022-02-16 05:19:03 +01:00
Let $ p \in \fp \setminus \{ 0 \} $ with the minimal number of prime factors,
counted by multiplicity.
If $ p $ was a unit, then $ \fp \supseteq pR = R $ .
If $ p = ab $ with non-units $ a,b $ , it follows that $ a \in \fp $ or $ b \in \fp $
contradicting the minimality assumption.
2022-02-16 02:31:15 +01:00
Thus $ p $ is a prime element of $ R $ .
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { proposition} [Irreducible subsets of codimension one]
\label { irredcodimone}
Let $ p \in R = \mathfrak { k } [ X _ 1 , \ldots , X _ n ] $ be a prime element.
Then the irreducible subset $ X = V ( p ) \subseteq \mathfrak { k } ^ n $ has
codimension
one, and every codimension one subset of $ \mathfrak { k } ^ n $ has this
form.
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
Since $ pR $ is a prime ideal, $ X = V ( p ) $ is irreducible.
Since $ p \neq 0 $ , $ X $ is a proper subset of $ \mathfrak { k } ^ n $ .
If $ X \subseteq Y \subseteq \mathfrak { k } ^ n $ is irreducible and
closed, then $ Y
= V(\fq )$ for some prime ideal $ \fp \subseteq pR$ .
If $ Y \neq \mathfrak { k } ^ n $ , then $ \fp \neq \{ 0 \} $ .
By
\ref { ufdprimeideal} there exists a prime element $ q \in \fq $ .
As $ \fq \subseteq pR $ we have $ p \divides q $ .
By the irreducibility of $ p $ and $ q $ it follows that $ p \sim q $ .
Hence $ \fq = pR $ and $ X = Y $ .
Suppose $ X = V ( \fp ) \subseteq \mathfrak { k } ^ n $ is closed, irreducible
and of
codimension one.
Then $ \fp \neq \{ 0 \} $ , hence $ X \neq \mathfrak { k } ^ n $ .
By
\ref { ufdprimeideal} there is a prime element $ p \in \fp $ .
If $ \fp \neq pR $ , then $ X \subsetneq V ( p ) \subsetneq
\mathfrak { k} ^ n$
contradicts $ \codim ( X, \mathfrak { k } ^ n ) = 1 $ .
2022-02-16 02:31:15 +01:00
\end { proof}
% Lecture 05
\subsection { Transcendence degree}
\subsubsection { Matroids}
\begin { definition} [Hull operator]
2022-02-16 05:19:03 +01:00
Let $ X $ be a set, $ \mathcal { P } ( X ) $ the power set of $ X $ .
A \vocab { Hull operator} on $ X $ is a map $ \mathcal { P } ( X )
\xrightarrow { \mathcal { H} } \mathcal { P} (X)$ such that
2022-02-16 02:31:15 +01:00
\begin { enumerate}
2022-02-16 05:19:03 +01:00
\item [H1]
$ \forall A \in \mathcal { P } ( X ) ~ A \subseteq \mathcal { H } ( A ) $ .
\item [H2]
$ A \subseteq B \subseteq X \implies \mathcal { H } ( A ) \subseteq
\mathcal { H} (B)$ .
\item [H3]
$ \mathcal { H } ( \mathcal { H } ( X ) ) = \mathcal { H } ( X ) $ .
2022-02-16 02:31:15 +01:00
\end { enumerate}
2022-02-16 05:19:03 +01:00
We call $ \mathcal { H } $ \vocab { matroidal} if in addition the
following
conditions hold:
2022-02-16 02:31:15 +01:00
\begin { enumerate}
2022-02-16 05:19:03 +01:00
\item [M]
If $ m,n \in X $ and $ A \subseteq X $
then $ m \in \mathcal { H } ( \{ n \} \cup A ) \setminus \mathcal { H } ( A ) \iff n
\in
\mathcal { H} (\{ m\} \cup A) \setminus \mathcal { H} (A).
$
\item [F]
$ \mathcal { H } ( A ) = \bigcup _ { F \subseteq A \text { finite } } \mathcal { H } ( F ) $ .
2022-02-16 02:31:15 +01:00
\end { enumerate}
2022-02-16 05:19:03 +01:00
In this case, $ S \subseteq X $ is called \vocab { Independent subset} , if $ s
\not \in \mathcal { H} (S \setminus \{ s\} )$ for all $ s \in S$ and
2022-02-16 02:31:15 +01:00
\vocab [Generating subset] { generating} if $ X = \mathcal { H } ( S ) $ .
2022-02-16 05:19:03 +01:00
$ S $ is called a \vocab { base} , if it is both generating and
independent.
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { theorem}
2022-02-16 05:19:03 +01:00
If $ \mathcal { H } $ is a matroidal hull operator on $ X $ , then a basis
exists,
every independent set is contained in a base and two arbitrary bases have the
same cardinality.
2022-02-16 02:31:15 +01:00
\end { theorem}
\begin { example}
2022-02-16 05:19:03 +01:00
Let $ K $ be a field, $ V $ a $ K $ -vector space and $ \mathcal { L } ( T ) $ the
$ K $ -linear
hull of $ T $ for $ T \subseteq V $ .
2022-02-16 02:31:15 +01:00
Then $ \mathcal { L } $ is a matroidal hull operator on $ V $ .
\end { example}
\subsubsection { Transcendence degree}
\begin { lemma}
2022-02-16 05:19:03 +01:00
Let $ L / K $ be a field extension and let $ \mathcal { H } ( T ) $ be the
algebraic
closure in $ L $ of the subfield of $ L $ generated by $ K $ and $ T $ .
\footnote { This is the intersection of all subfields of $ L $ containing $ K \cup
T$ , or the field of quotients of the sub - $ K$ - algebra of $ L$ generated by $ T$ . }
2022-02-16 02:31:15 +01:00
Then $ \mathcal { H } $ is a matroidal hull operator.
\end { lemma}
\begin { proof}
2022-02-16 05:19:03 +01:00
H1, H2 and F are trivial.
For an algebraically closed subfield $ K \subseteq M \subseteq L $ we have
$ \mathcal { H } ( M ) = M $ .
Thus $ \mathcal { H } ( \mathcal { H } ( T ) ) = \mathcal { H } ( T ) $ (H3).
Let $ x,y \in L $ , $ T \subseteq L $ and $ x \in \mathcal { H } ( T \cup \{ y \} )
\setminus \mathcal { H} (T)$ .
We have to show that $ y \in \mathcal { H } ( T \cup \{ x \} ) \setminus
\mathcal { H} (T)$ .
If $ y \in \mathcal { H } ( T ) $ we have $ \mathcal { H } ( T \cup \{ y \} ) \subseteq
\mathcal { H} (\mathcal { H} (T)) = \mathcal { H} (T) \implies x \in
\mathcal { H} (T)
\setminus \mathcal { H} (T) \lightning $ .
Hence it is sufficient to show $ y \in \mathcal { H } ( T \cup \{ x \} ) $ .
Without loss of generality loss of generality $ T = \emptyset $ (replace $ K $ be
the subfield generated by $ K \cup T $ ).
Then $ x $ is algebraic over the subfield $ M $ of $ L $ generated by $ K \cup \{ y \} $ .
Thus there exists $ 0 \neq P \in M [ T ] $ with $ P ( x ) =
0$ .
The coefficients $ p _ i $ of $ P $ belong to the field of quotients of the
$ K $ -subalgebra of $ L $ generated by $ y $ .
There are thus polynomials $ Q _ i, R \in K [ Y ] $ such
that $ p _ i =
\frac { Q_ i(y)} { R(y)} $ , $ R(y) \neq 0$ .
2022-02-16 02:31:15 +01:00
Let
\[
2022-02-16 05:19:03 +01:00
Q(X,Y) \coloneqq \sum _ { i=0} ^ { \infty } X^ i Q_ i(Y) = \sum _ { i,j=0} ^ { \infty }
q_ { i,j} X^ i Y^ j = \sum _ { j=0} ^ { \infty } Y^ j
\hat { Q_ j} (X) \in K[X,Y]
\]
.
2022-02-16 02:31:15 +01:00
Then $ Q ( x,y ) = 0 $ .
2022-02-16 05:19:03 +01:00
Let $ \hat { p _ j } \coloneqq \hat { Q _ j } ( x ) $ .
Then $ \hat { P } ( y ) = 0 $ .
As $ Q \neq 0 $ there is $ ( i,j ) \in \N ^ 2 $ such that
$ q _ { i,j } \neq 0 $ and then
$ \hat { p _ j } \neq 0 $ as $ x \not \in \mathcal { H } ( \emptyset ) $ .
Thus $ \hat { P } \in \hat { M } [ X ] \setminus \{ 0 \} $ ,
where $ \hat { M } $ is the
subfield of $ L $ generated by $ K $ and $ x $ .
Thus $ y $ is algebraic over $ \hat { M } $ and $ y \in
\mathcal { H} (\{ x\} )$ ,
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { definition} [Transcendence Base] Let $ L / K $ be a field
extension and $ \mathcal { H } ( T ) $ the algebraic closure in $ L $ of the
subfield
generated by $ K $ and $ T $ .
A base for $ ( L, \mathcal { H } ) $ is called a \vocab { transcendence base}
and the
\vocab { transcendence degree} $ \trdeg ( L / K ) $ is defined as the
cardinality of
any transcendence base of $ L / K $ .
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { remark}
$ L / K $ is algebraic iff $ \trdeg ( L / K ) = 0 $ .
\end { remark}
2022-02-16 05:19:03 +01:00
\subsection { Inheritance of Noetherianness and of finite type by subrings and subalgebras /
Artin-Tate}
The following will lead to another proof of the Nullstellensatz, which uses the
transcendence degree.
2022-02-16 02:31:15 +01:00
\begin { remark}
2022-02-16 05:19:03 +01:00
There exist non-Noetherian domains, which are subrings of Noetherian domains
(namely the field of quotients is Noetherian).
2022-02-16 02:31:15 +01:00
\end { remark}
\begin { theorem} [Eakin-Nagata]
2022-02-16 05:19:03 +01:00
Let $ A $ be a subring of the Noetherian ring $ B $ .
If the ring extension $ B / A $ is finite (i.e. $ B $ finitely generated as an
$ A $ -module) then $ A $ is Noetherian.
2022-02-16 02:31:15 +01:00
\end { theorem}
2022-02-16 05:19:03 +01:00
\begin { fact}
+
\label { noethersubalg}
Let $ R $ be Noetherian and let $ B $ be a finite $ R $ -algebra.
Then every $ R $ -subalgebra $ A \subseteq B $ is finite over $ R $ .
2022-02-16 02:31:15 +01:00
\end { fact}
\begin { proof}
2022-02-16 05:19:03 +01:00
Since $ B $ a finitely generated $ R $ -module and $ R $ a Noetherian ring, $ B $ is a
Noetherian $ R $ -module (this is a stronger assertion than Noetherian algebra).
2022-02-16 02:31:15 +01:00
Thus the sub- $ R $ -module $ A $ is finitely generated.
\end { proof}
\begin { proposition} [Artin-Tate]
\label { artintate}
2022-02-16 05:19:03 +01:00
Let $ A $ be a subalgebra of the $ R $ -algebra $ B $ , where $ R $ is Noetherian.
If $ B / R $ is of finite type and $ B / A $ is finite, then $ A / R $ is also of
finite type.
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
\[
2022-02-16 02:31:15 +01:00
\begin { tikzcd}
2022-02-16 05:19:03 +01:00
A \arrow [hookrightarrow] { rr} { \subseteq } & & B \\ & R \arrow { ul} { \alpha }
\arrow { ur} { \alpha } \text { ~(Noeth.)
}
2022-02-16 02:31:15 +01:00
\end { tikzcd}
2022-02-16 05:19:03 +01:00
\]
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
Let $ ( b _ i ) _ { i = 1 } ^ { m } $ generate $ B $ as an
$ A $ -module and $ ( \beta _ j ) _ { j = 1 } ^ m $ as
an $ R $ -algebra.
There are $ a _ { ijk } \in A $ such that $ b _ i b _ j =
\sum _ { k=1} ^ { m} a_ { ijk} b_ k$ .
And $ \alpha _ { ij } \in A $ such that $ \beta _ i =
\sum _ { j=1} ^ { m} \alpha _ { ij} b_ j$ .
Let $ \tilde { A } $ be the sub- $ R $ -algebra of $ A $ generated by the
$ a _ { ijk } $ and
$ \alpha _ { ij } $ .
$ \tilde { A } $ is of finite type over $ R $ , hence Noetherian.
The $ \tilde { A } $ -submodule generated by $ 1 $ and the $ b _ i $ is a
sub-$ R $ -algebra
containing the $ \beta _ i $ and thus coincides with $ B $ .
Hence $ B / \tilde { A } $ is finite.
Since $ A \subseteq B, A / \tilde { A } $ is finite
(
\ref { noethersubalg} ).
Hence $ A / \tilde { A } $ is of finite type.
By the transitivity of ``of finite type'', it follows that $ A / R $ is of finite
type.
2022-02-16 02:31:15 +01:00
\[
\begin { tikzcd}
\tilde A \arrow [hookrightarrow] { r} { \subseteq } & A \arrow [hookrightarrow] { r} { \subseteq } & B \\
2022-02-16 05:19:03 +01:00
& R \arrow [bend left, swap] { ul} { \alpha } \arrow { u} { \alpha } \arrow [bend right] { ur} { \alpha }
2022-02-16 02:31:15 +01:00
\end { tikzcd}
2022-02-16 05:19:03 +01:00
\]
2022-02-16 02:31:15 +01:00
\end { proof}
\subsubsection { Artin-Tate proof of the Nullstellensatz}
2022-02-16 05:19:03 +01:00
Let $ K $ be a field and $ R = K [ X _ 1 , \ldots ,X _ n ] $ .
2022-02-16 02:31:15 +01:00
\begin { definition} [Rational functions]
2022-02-16 05:19:03 +01:00
Let $ K ( X _ 1 , \ldots ,X _ n ) \coloneqq Q ( R ) $ be the field of
quotients of $ R $ .
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
$ K ( X _ 1 , \ldots ,X _ n ) $ is called the \vocab { field of rational functions} in $ n $ variables
over $ K $ .
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { lemma} [Infinitely many prime elements]
2022-02-16 05:19:03 +01:00
There are infinitely many multiplicative equivalence
classes of prime elements in $ R $ .
2022-02-16 02:31:15 +01:00
\end { lemma}
\begin { proof}
2022-02-16 05:19:03 +01:00
Suppose $ ( P _ i ) _ { i = 1 } ^ m $ is a complete (up to
multiplicative equvialence) lsit
of prime elements of $ R $ .
$ m > 0 $ , as $ X _ 1 $ is prime.
The polynomial $ f \coloneqq 1 + \prod _ { i = 1 } ^ { m } P _ i $ is non-constant,
hence
not a unit in $ R $ .
Hence there exists a prime divisor $ P \in R $ .
As no $ P _ i $ divides $ f $ , $ P $ cannot be multiplicatively equivalent to any $ P _ i
\lightning $ .
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { lemma} [Ring of rational functions not of finite type]
\label { rfuncnft}
2022-02-16 02:31:15 +01:00
If $ n > 0 $ , then $ K ( X _ 1 , \ldots ,X _ n ) / K $ is not of finite type.
\end { lemma}
\begin { proof}
2022-02-16 05:19:03 +01:00
Suppose $ ( f _ i ) _ { i = 1 } ^ m $ generate
$ K ( X _ 1 , \ldots ,X _ n ) $ as a $ K $ -algebra.
Let $ f _ i = \frac { a _ i } { b } , a _ i \in R, b \in R \setminus \{ 0 \} $ .
Then $ bf _ i \in R $ , and as the $ f _ i $ generate $ K ( X _ 1 , \ldots ,X _ n ) $ as a
$ K $ -algebra, for every $ g \in K ( X _ 1 , \ldots ,X _ n ) $ there is $ N \in \N $ with
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
b^ Ng \in R \tag { +}
\label { bNginR}
2022-02-16 02:31:15 +01:00
\]
2022-02-16 05:19:03 +01:00
However, if $ b = \varepsilon
\prod _ { i=1} ^ { l} P_ i$ is a decomposition of $ b$ into prime factors $ P_ i$
and a
unit $ \varepsilon $ in $ R $ and $ g = \frac { 1 } { P } $ , wehere $ P \in R $
is a prime
element not multiplicatively equvalent to any $ P _ i $ , then
\eqref { bNginR} fails
for any $ N \in \N $ .
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
The Nullstellensatz (
\ref { hns2} ) can be reduced to the case of
\ref { rfuncnft} :
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
\begin { proof}
(Artin-Tate proof of HNS) Let $ ( l _ i ) _ { i = 1 } ^ n $
be a transcendence
base of $ L / K $ .
If $ n = 0 $ then $ L / K $ is algebraic, hence an integral ring extension, hence a
finite ring extension (
\ref { ftaiimplf} ).
Suppose $ n > 0 $ .
Let $ \tilde R \subseteq L $ be the $ K $ -subalgebra generated by the $ l _ i $ .
$ \tilde R \cong R \coloneqq K [ X _ 1 , \ldots ,X _ n ] $ , as the $ l _ i $ are
algebraically independent.
As they are a transcendence base, $ L $ is algebraic over the field of quotients
$ Q ( \tilde R ) $ , hence integral over $ Q ( \tilde R ) $ .
As $ L / K $ is of finite type, so is $ L / Q ( \tilde R ) $ and it follows that $ L /
Q(\tilde R)$ is a finite ring extension.
By Artin-Tate (
\ref { artintate} ), $ Q ( \tilde K ) $ is of finite type over
$ K $ .
This contradicts
\ref { rfuncnft} , as $ R \cong \tilde R \implies
K(X_ 1,\ldots ,X_ n) \cong Q(\tilde R)$ .
2022-02-16 02:31:15 +01:00
\end { proof}
\subsection { Transcendence degree and Krull dimension}
Let $ R = \mathfrak { k } [ X _ 1 , \ldots ,X _ n ] $ .
%i = ic
\begin { notation}
2022-02-16 05:19:03 +01:00
Let $ X \subseteq \mathfrak { k } ^ n $ be an irreducible closed subset.
Then $ X = V ( \fp ) $ for a unique prime ideal $ \fp \subseteq R $ .
Let $ \mathfrak { K } ( X ) \coloneqq Q ( R / \fp ) $ denote the field of
quotients of $ R
/ \fp $ .
2022-02-16 02:31:15 +01:00
\end { notation}
\begin { remark}
2022-02-16 05:19:03 +01:00
As the elements of $ \fp $ vanish on $ X $ , $ R / \fp $ may be viewed as the ring of
polynomials and $ \mathfrak { K } ( X ) $ as the field of rational functions
on $ X $ .
2022-02-16 02:31:15 +01:00
\end { remark}
2022-02-16 05:19:03 +01:00
\begin { theorem}
\label { trdegandkdim}
If $ X \subseteq \mathfrak { k } ^ n $ is irreducible, then $ \dim X =
\trdeg
(\mathfrak { k} (X) / \mathfrak { k} )$ and $ \codim (X, \mathfrak { k} ^ n) = n -
\trdeg (\mathfrak { K} (X) / \mathfrak { k} )$ .
More generally if $ Y \subseteq \mathfrak { k } ^ n $ is irreducible and $ X
\subseteq
Y$ , then $ \codim (X,Y) = \trdeg (\mathfrak { K} (Y) / \mathfrak { k} ) -
\trdeg (\mathfrak { K} (X) / \mathfrak { k} )$ .
2022-02-16 02:31:15 +01:00
\end { theorem}
\begin { proof}
% DIMT
2022-02-16 05:19:03 +01:00
One part will be shown in "A first result on dimension theory"
(
\ref { upperboundcodim} ) and other one in "Aplication to dimension theory:
Proof
of $ \dim Y = \trdeg ( \mathfrak { K } ( Y ) / \mathfrak { k } ) $ " (
\ref { lowerbounddimy} ).
The theorem is a special case of
\ref { htandtrdeg} .
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { remark}
2022-02-16 05:19:03 +01:00
Loosely speaking, the Krull dimension of $ X $ is equal to the maximal number of
$ \mathfrak { k } $ -algebraically independent rational functions on $ X $ .
This is yet another indication that the notion of dimension is the ``correct''
one.
2022-02-16 02:31:15 +01:00
\end { remark}
\begin { remark}
\ref { kdimkn} follows.
\end { remark}
% Lecture 06
\subsection { The spectrum of a ring}
\begin { definition} [Spectrum]
Let $ R $ be a commutative ring.
\begin { itemize}
2022-02-16 05:19:03 +01:00
\item
Let $ \Spec R $ denote the set of prime ideals and $ \MaxSpec R \subseteq \Spec R $
the set of maximal ideals of $ R $ .
\item
For an ideal $ I \subseteq R $ let $ V ( I ) \coloneqq \{ \fp \in \Spec R | I
\subseteq \fp \} $
\item
We equip $ \Spec R $ with the \vocab { Zariski-Topology} for which the closed
subsets are the subsets of the form $ V ( I ) $ , where $ I $ runs over the set of
ideals in $ R $ .
2022-02-16 02:31:15 +01:00
\end { itemize}
\end { definition}
\begin { remark}
2022-02-16 05:19:03 +01:00
When $ R = \mathfrak { k } [ X _ 1 , \ldots ,X _ n ] $ , the notation $ V ( I ) $ clashes with the
previous notation.
When several types of $ V ( I ) $ will be in use, they will be distinguished using
indices.
2022-02-16 02:31:15 +01:00
\end { remark}
\begin { remark}
2022-02-16 05:19:03 +01:00
Let $ ( I _ { \lambda } ) _ { \lambda \in \Lambda } $
and $ ( l _ j ) _ { j = 1 } ^ n $ be ideals in $ R $ ,
where $ \Lambda $ may be infinite.
We have $ V ( \sum _ { \lambda \in \Lambda } I _ \lambda ) = \bigcap _ { \lambda \in
\Lambda }
V(I_ \lambda )$ and $ V(\bigcap _ { j=1} ^ n I_ j) = V(\prod _ { j=1} ^ { n}
I_ j) =
\bigcup _ { j = 1} ^ n V(I_ j)$ .
2022-02-16 02:31:15 +01:00
Thus, the Zariski topology on $ \Spec R $ is a topology.
\end { remark}
\begin { remark}
2022-02-16 05:19:03 +01:00
Let $ R = \mathfrak { k } [ X _ 1 , \ldots ,X _ n ] $ .
Then there exists a bijection (
\ref { antimonbij} ,
\ref { bijiredprim} ) between
$ \Spec R $ and the set of irreducible closed subsets of
$ \mathfrak { k } ^ n $ sending
$ \fp \in \Spec R $ to $ V _ { \mathfrak { k } ^ n } ( \fp ) $ and identifying the
one-point
subsets with $ \MaxSpec R $ .
This defines a bijection $ \mathfrak { k } ^ n \cong \MaxSpec R $ which is
a
homeomorphism if $ \MaxSpec R $ is equipped with the induced topology from the
Zariski topology on $ \Spec R $ .
2022-02-16 02:31:15 +01:00
\end { remark}
\subsection { Localization of rings}
\begin { definition} [Multiplicative subset]
2022-02-16 05:19:03 +01:00
A \vocab { multiplicative subset} of a ring $ R $ is a subset $ S
\subseteq R$ such that $ \prod _ { i=1} ^ { n} f_ i \in S $ when $ n \in \N $ and
all $ f _ i \in S $ .
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { proposition}
2022-02-16 05:19:03 +01:00
Let $ S \subseteq R $ be a multiplicative subset.
Then there is a ring homomorphism $ R \xrightarrow { i } R _ S $ such that
$ i ( S )
\subseteq R_ S^ { \times } $ and $ i$ has the \vocab { universal property } for such
ring homomorphisms: If $ R \xrightarrow { j } T $ is a ring homomorphism
with $ j ( S )
\subseteq T^ { \times } $ , then there is a unique ring
homomorphism $ R _ S
\xrightarrow { \iota } T$ with $ j = \iota i$ .
2022-02-16 02:31:15 +01:00
\[
\begin { tikzcd}
2022-02-16 05:19:03 +01:00
R \arrow { r} { i} \arrow { d} { j} & R_ S \arrow [dotted] { ld} { \existsone \iota } \\ T
2022-02-16 02:31:15 +01:00
\end { tikzcd}
2022-02-16 05:19:03 +01:00
\]
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
The construction is similar to the construction of the field of
quotients:
Let $ R _ S \coloneqq ( R \times S ) / \sim $ , where $ ( r,s ) \sim ( \rho , \sigma )
:
\iff \exists t \in S ~ t \sigma r = ts\rho $ .
\footnote { $ t $ does not appear in the construction of the field of
quotients, but is important if $ S $ contains zero divisors.}
$ [ r,s ] + [ \rho , \sigma ]
\coloneqq [r\sigma + \rho s, s \sigma ]$ , $ [r,s]
\cdot [\rho , \sigma ] \coloneqq [r \cdot \rho , s \cdot \sigma ]$ .
In order proof the universal property define $ \iota ( [ r,s ] ) \coloneqq
\frac { j(r)} { j(s)} $ .
2022-02-16 02:31:15 +01:00
The universal property characterizes $ R _ S $ up to unique isomorphism.
\end { proof}
\begin { remark}
2022-02-16 05:19:03 +01:00
$ i $ is often not injective and $ \ker ( i ) = \{ r \in R | \exists s
\in S ~ s \cdot r = 0\} $ .
2022-02-16 02:31:15 +01:00
In particular $ ( r = 1 ) $ , $ R _ S $ is the null ring iff $ 0 \in S $ .
\end { remark}
\begin { notation}
2022-02-16 05:19:03 +01:00
Let $ S \subseteq R $ be a multiplicative subset of $ R $ .
We write $ \frac { r } { s } $ for
$ [ r,s ] $ .
The ring homomorphism $ R \xrightarrow { i } R _ S $ i given by $ i ( r ) =
\frac { r} { 1} $ .
For $ X \subseteq R _ S $ let $ X \sqcap R $ denote
$ i ^ { - 1 } ( X ) $ .
2022-02-16 02:31:15 +01:00
\end { notation}
\begin { definition} [$ S $ -saturated ideal]
2022-02-16 05:19:03 +01:00
An ideal $ I \subseteq R $ is called
\vocab [Ideal!
S-saturated]{ $ S $ -saturated} if for all $ s \in S, r \in R $ $ rs \in I \implies r
\in I$ .
2022-02-16 02:31:15 +01:00
\end { definition}
2022-02-16 05:19:03 +01:00
\begin { fact}
\label { primeidealssat}
A prime ideal $ \fp \subseteq \Spec R $ is $ S $ -saturated iff $ \fp \cap S =
\emptyset $ .
2022-02-16 02:31:15 +01:00
\end { fact}
2022-02-16 05:19:03 +01:00
Because the elements of $ S $ become units in $ R _ S $ , $ J \sqcap R $ is an
$ S $ -saturated ideal in $ R $ when $ J $ is an ideal in $ R _ S $ .
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
\begin { fact}
\label { ssatiis}
Let $ I \subseteq R $ be an $ S $ -saturated ideal and let $ I _ S $ denote the ideal
$ \{ \frac { r } { s } | r \in R, s \in S \} \subseteq R _ S $ .
Then for all $ r \in R, s \in S $ we have $ \frac { r } { s } \in I _ S \iff r
\in I$ .
2022-02-16 02:31:15 +01:00
\end { fact}
\begin { proof}
2022-02-16 05:19:03 +01:00
Clearly $ i \in I \implies \frac { i } { s } \in I _ S $ .
If $ \frac { i } { s } \in J $ there are $ \iota \in I $ , $ \sigma \in S $ such
that
$ \frac { i } { s } = \frac { \iota } { \sigma } $ in $ R _ S $ .
This equation holds iff there exists $ t \in S $ such that $ ts \iota = t \sigma
i$ .
But $ ts \iota \in I $ hence $ i \in I $ , as $ I $ is $ S $ -saturated.
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { fact}
\label { invimgprimeideal}
The inverse image of a prime ideal under any ring homomorphism is a prime
ideal.
2022-02-16 02:31:15 +01:00
\end { fact}
2022-02-16 05:19:03 +01:00
\begin { proposition}
\label { idealslocbij}
2022-02-16 02:31:15 +01:00
\begin { align}
2022-02-16 05:19:03 +01:00
f: \{ I \subseteq R | I \text { $ S $ -saturated ideal} \} & \longrightarrow \left \{ J \subseteq R_ S | J \text { ideal} \right \} \\
I & \longmapsto I_ S \coloneqq \left \{ \frac { i} { s} | i \in I, s \in S\right \} \\
J \sqcap R & \longmapsfrom J \\
2022-02-16 02:31:15 +01:00
\end { align}
2022-02-16 05:19:03 +01:00
is a bijection.
Under this bijection $ I $ is a prime ideal iff $ f ( I ) $ is.
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
Applying
\ref { ssatiis} to $ s = 1 $ gives $ I _ S \sqcap R = I $ , when $ I $
is
$ S $ -saturated.
Conversely, if $ J $ is given and $ I = J \sqcap R, \frac { r } { s } \in
R_ S$ , then by
\ref { ssatiis} $ \frac { r } { s } \in IR _ S \iff r \in I $ .
But as $ \frac { r } { 1 } = s \cdot \frac { r } { s } $ and $ s \in
R_ S^ { \times } $ , we have
$ r \in I \iff \frac { r } { 1 } \in J \iff \frac { r } { s } \in J $
.
We have thus shown that the two maps between sets of ideals are well-defined
and inverse to each other.
By
\ref { invimgprimeideal} , $ J \in \Spec R _ S \implies
f^ { -1} (J) = J \cap R \in
\Spec R_ S$ .
Suppose $ I \in \Spec R $ , $ \frac { a } { s } \cdot \frac { b } { t }
\in I_ S$ for some $ a,b
\in R, s,t \in S$ .
By
\ref { ssatiis} $ ab \in I $ .
Thus $ a \in I \lor b \in I $ , hence $ \frac { a } { s } \in I _ S \lor
\frac { b} { t} \in
I_ S$ and we have $ I_ S \in \Spec R_ S$ .
2022-02-16 02:31:15 +01:00
\end { proof}
% Some more remarks on localization
2022-02-16 05:19:03 +01:00
\begin { remark}
\label { locandquot}
Let $ R $ be a domain.
If $ S = R \setminus \{ 0 \} $ , then $ R _ S $ is the field of quotients $ Q ( R ) $ .
2022-02-16 02:31:15 +01:00
If $ S \subseteq R \setminus \{ 0 \} $ , then
2022-02-16 05:19:03 +01:00
\[
R_ S \cong \left \{ \frac { a} { s} \in
K | a \in R, s \in S\right \}
\]
2022-02-16 02:31:15 +01:00
In particular $ Q ( R ) \cong Q ( R _ S ) $ .
\end { remark}
2022-02-16 05:19:03 +01:00
\begin { definition} [$ S $ -saturation]
\label { ssaturation}
Let $ R $ be any ring, $ I \subseteq R $ an ideal.
Even if $ I $ is not $ S $ -saturated, $ J = I _ S \coloneqq \{ \frac { i } { s }
| i \in I, s
\in S\} $ is an ideal in $ R_ S$ , and $ I_ S \sqcap R = \{ r \in R | s\cdot r \in
I, s \in S\} $ is called the \vocab [ Ideal !
$ S $ -saturation]{ $ S $ -saturation of $ I $ } which is the smallest
$ S $ -saturated ideal containing $ I $ .
2022-02-16 02:31:15 +01:00
\end { definition}
2022-02-16 05:19:03 +01:00
\begin { lemma}
\label { locandfactor}
In the situation of
\ref { ssaturation} , if $ \overline { S } $
denotes the image of
$ S $ in $ R / I $ , there is a canonical isomorphism $ R _ S / I _ S
\cong (R /
I)_ { \overline { S} } $ .
2022-02-16 02:31:15 +01:00
\end { lemma}
\begin { proof}
2022-02-16 05:19:03 +01:00
We show that both rings have the universal property for ring homomorphisms $ R
\xrightarrow { \tau } T$ with $ \tau (I) = \{ 0\} $ and
$ \tau ( S ) \subseteq
T^ { \times } $ .
For such $ \tau $ , by the fundamental theorem on homomorphisms (Homomorphiesatz)
there is a unique $ R / I \xrightarrow { \tau _ 1 } T $ such that $ \tau = \tau _ 1
\pi _ { R,I} $ .
We have $ \tau _ 1 ( \overline { S } ) = \tau ( S ) \subseteq
T^ { \times } $ , hence there is
a unique $ ( R / I ) _ { \overline { S } }
\xrightarrow { \tau _ 2} T$ such that the
composition $ R / I \to ( R / I ) _ { \overline { S } }
\xrightarrow { \tau _ 2} T $ equals
$ \tau _ 1 $ .
It is easy to see that this is the only one for which $ R \to R / I
\to (R /
I)_ { \overline { S} } \xrightarrow { \tau _ 2} T$
equals $ \tau $ .
Similarly, by the universal property of $ R _ S $ there is a unique $ R _ S
\xrightarrow { \tau _ 3} T$ whose composition with $ R \to R_ S$ equals $ \tau $ .
$ \tau _ 3 ( I _ { S } ) = 0 $ , hence a unique $ R _ S / I _ S
\xrightarrow { \tau _ 4}
T$ whose composition with $ \pi _ { R_ S, I_ S} $ equals $ \tau _ 3$ exists.
This is the only one for which the composition $ R \to R _ S \to R _ S / I _ S
\xrightarrow { \tau _ 4} T$ equals $ \tau $ .
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
\begin { tikzcd}
R \arrow { r} { \tau } \arrow [swap] { d} { \pi _ { R,I} } & T &
R\arrow [swap] { l} { \tau } \arrow { d} { } \\ R / I \arrow [dotted] { ru} { \existsone
\tau _ 1} \arrow { d} { } & & R_ S \arrow [dotted, swap] { lu} { \existsone
\tau _ 3} \arrow { d} { \pi _ { R_ S, I_ S} } \\ (R / I)_ { \overline { S} } \arrow [dotted,bend
right]{ ruu} { \existsone \tau _ 2} & & R_ S / I_ S \arrow [dotted, bend left,
swap]{ luu} { \existsone \tau _ 4} \\
\end { tikzcd}
\]
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\subsection { A first result of dimension theory}
2022-02-16 02:31:15 +01:00
\begin { notation}
2022-02-16 05:19:03 +01:00
Let $ R $ be a ring, $ \fp \in \Spec R $ .
Let $ \mathfrak { k } ( \fp ) $ denote the field of quotients of the domain $ R /
\fp $ .
This is called the \vocab { residue field} of $ \fp $ .
2022-02-16 02:31:15 +01:00
\end { notation}
% i = ic
2022-02-16 05:19:03 +01:00
\begin { proposition}
\label { trdegresfield}
Let $ \mathfrak { l } $ be a field, $ A $ a
$ \mathfrak { l } $ -algebra of finite type and
$ \fp , \fq \in \Spec A $ with $ \fp \subsetneq \fq $ .
%% ??
Then
\[
\trdeg (\mathfrak { k} (\fp ) / \mathfrak { l} ) > \trdeg (\mathfrak { k} (\fq ) /
\mathfrak { l} )
\]
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
Replacing $ A $ by $ A / \fp $ , we
may assume $ \fp = \{ 0 \} $ and $ A $ to be a domain.
Then $ \mathfrak { k } ( \fp ) = Q ( A / \fp ) = Q ( A ) $ .
If $ \fq $ is a maximal ideal, $ \mathfrak { k } ( \fq ) = A / \fq $ is of finite
type
over $ \mathfrak { l } $ , hence a finite field extension of
$ \mathfrak { l } $ by the
Nullstellensatz (
\ref { hns2} ).
2022-02-16 02:31:15 +01:00
Thus, $ \trdeg ( \mathfrak { k } ( \fq ) / \mathfrak { l } ) = 0 $ .
2022-02-16 05:19:03 +01:00
If $ \trdeg ( Q ( A ) / \mathfrak { l } ) = 0 $ , $ A $ would be integral over
$ \mathfrak { l } $ , hence a field (fact about integrality and fields,
\ref { fintaf} ).
But if $ A $ is a field, $ \fp = \{ 0 \} $ is a maximal ideal of $ A $ , hence $ \fq =
\fp \lightning $ .
2022-02-16 02:31:15 +01:00
This finishes the proof for $ \fq \in \MaxSpec A $ .
We will use the following lemma to reduce the general case to this case:
2022-02-16 05:19:03 +01:00
\begin { lemma}
\label { ltrdegresfieldtrbase} There are algebraically independent
$ a _ 1 , \ldots ,a _ n \in A $ whose images in $ A / \fq $ form a transcendence base for
$ \mathfrak { k } ( \fq ) / \mathfrak { l } $ .
2022-02-16 02:31:15 +01:00
\end { lemma}
\begin { subproof}
2022-02-16 05:19:03 +01:00
There exist $ a _ 1 , \ldots ,a _ n \in A $ such that $ \mathfrak { k } ( \fq ) $ is
algebraic
over the subfield generated by $ \mathfrak { l } $ and their images
$ \overline { a _ i } $
(for instance generators of $ A $ as a $ \mathfrak { l } $ -algebra).
We may assume that $ n $ is minimal.
If the $ a _ i $ are $ \mathfrak { l } $ -algebraically dependent, then
w.l.o.g.
$ \overline { a _ n } $ can be assumed to be algebraic over the subfield
generated by $ \mathfrak { l } $ and the $ \overline { a _ i } , 1 \le
i <n$ .
Thus, $ a _ n $ could be removed, contradicting the minimality.
2022-02-16 02:31:15 +01:00
\end { subproof}
Let $ \fq $ be any prime ideal.
2022-02-16 05:19:03 +01:00
Take $ a _ 1 , \ldots ,a _ n \in A $ as in the lemma.
As the $ a _ i \mod \fq $ are $ \mathfrak { l } $ -algebraically independent,
the same
holds for the $ a _ i $ themselves.
Thus $ \trdeg ( Q ( A ) / \mathfrak { l } ) \ge n $ and the inequality is
strict, if it
can be shown that the $ a _ i $ fail to be a transcendence base of $ Q ( A ) /
\mathfrak { l} $ .
Let $ R \subseteq A $ denote the $ \mathfrak { l } $ -subalgebra generated
by
$ a _ 1 , \ldots ,a _ n $ and $ S \coloneqq R \setminus \{ 0 \} $ .
We must show, that $ Q ( A ) $ fails to be algebraic over
$ \mathfrak { l } _ 1 \coloneqq
R_ S = Q(R)$ .
Let $ A _ 1 \coloneqq A _ S $ and $ \fq _ S $ the prime ideal corresponding to $ \fq $ as
in
\ref { idealslocbij} .
We have $ \fq _ S \neq \{ 0 \} $ as $ \{ 0 _ { A } \} _ S =
\{ 0_ { A_ S} \} $ .
$ A _ 1 $ is a domain with $ Q ( A _ 1 ) \cong Q ( A ) $ (
\ref { locandquot} ) and $ A _ 1
/ \fq _ S$ is isomorphic to the localization of $ A / \fq $ with respect to the
image of $ S $ in $ A / \fq $ (
\ref { locandfactor} ).
$ \mathfrak { k } ( \fq _ S ) $ is algebraic over $ \mathfrak { l } _ 1 $
because the image of $ \mathfrak { l } _ 1 $ in $ \mathfrak { k } ( \fq _ S ) $
contains the images of $ \mathfrak { l } $ and the $ a _ i $ , and the images
of the $ a _ i $ form a transcendence base for $ \mathfrak { k } ( \fq ) /
\mathfrak { l} $ .
By the fact about integrality and fields (
\ref { fintaf} ) it follows
that $ A _ 1 /
\fq _ S$ is a field, hence $ \fq _ S \in \MaxSpec (A_ 1)$ and the special
case of
$ \fq \in \MaxSpec ( A ) $ can be applied to $ \fq _ S $ and $ A _ 1 /
\mathfrak { l} _ 1$
showing that $ Q ( A ) $ cannot be algebraic over $ \mathfrak { l } _ 1 $ .
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { corollary}
\label { upperboundcodim}
Let $ X, Y \subseteq \mathfrak { k } ^ n $ be irreducible and closed.
Then $ \codim ( X,Y ) \le \trdeg ( \mathfrak { K } ( Y ) / \mathfrak { k } ) -
\trdeg (\mathfrak { K} (X) / \mathfrak { k} )$ .
2022-02-16 02:31:15 +01:00
\end { corollary}
\begin { proof}
2022-02-16 05:19:03 +01:00
Let $ X = X _ 0 \subsetneq X _ 1 \subsetneq \ldots \subsetneq X _ c = Y $ be a chain of
irreducible closed subsets between $ X $ and $ Y $ .
Then $ X _ i = V ( \fp _ i ) $ for prime ideals $ \fp _ 0 \supsetneq \fp _ 1 \supsetneq
\ldots \supsetneq \fp _ c$ in $ R = \mathfrak { k} [X_ 1,\ldots ,X_ n]$ .
By
\ref { trdegresfield} we have $ \trdeg ( \mathfrak { k } ( \fp _ i ) / \mathfrak { k } ) <
\trdeg (\mathfrak { k} (\fp _ { i+1} ) / \mathfrak { k} )$ for all $ 0 \le i < c$ .
Thus
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
c + \trdeg (\mathfrak { K} (X) / \mathfrak { k} ) = c +
\trdeg (\mathfrak { k} (\fp _ 0) / \mathfrak { k} ) \le \trdeg (\mathfrak { k} (\fp _ c) /
\mathfrak { k} ) =
\trdeg (\mathfrak { K} (Y) / \mathfrak { k} )
2022-02-16 02:31:15 +01:00
\]
2022-02-16 05:19:03 +01:00
As $ \codim ( X,Y ) =
\sup \{ c \in \N | \exists X = X_ 0 \subsetneq \ldots \subsetneq X_ c = Y
\text {
irreducible, closed} \} $ it follows that
$$
\codim (X,Y) \le
\trdeg (\mathfrak { K} (Y) / \mathfrak { k} ) - \trdeg (\mathfrak { K} (X) /
\mathfrak { k} )
$$
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { corollary}
\label { upperbounddim} Let $ Z
\subseteq \mathfrak { k} ^ n$ be irreducible and closed.
Then
\[
\dim Z \le \trdeg (\mathfrak { K} (Z) / \mathfrak { k} )
\]
and
\[
\codim (Z,
\mathfrak { k} ^ n) \le n - \trdeg (\mathfrak { K} (Z) /
\mathfrak { k}
\]
2022-02-16 02:31:15 +01:00
\end { corollary}
\begin { proof}
2022-02-16 05:19:03 +01:00
Take $ X = \{ z \} $ and $ Y = Z $ or $ X = Z $ and $ Y =
\mathfrak { k} ^ n$ in
\ref { upperboundcodim} .
2022-02-16 02:31:15 +01:00
\end { proof}
% Lecture 07
\subsection { Local rings}
2022-02-16 05:19:03 +01:00
\begin { definition} [Local ring]
\label { localring}
Let $ R $ be a ring.
$ R $ is called a \vocab { local ring} , if the following equivalent
conditions hold:
2022-02-16 02:31:15 +01:00
\begin { itemize}
2022-02-16 05:19:03 +01:00
\item
$ \# \MaxSpec R = 1 $
\item
$ R \setminus R ^ { \times } $ is an ideal.
2022-02-16 02:31:15 +01:00
\end { itemize}
2022-02-16 05:19:03 +01:00
If this holds, $ \mathfrak { m } _ R \coloneqq R \setminus
R^ { \times } $ is the unique
maximal ideal of $ R $ .
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { proof}
2022-02-16 05:19:03 +01:00
Suppose $ \MaxSpec R = \{ \mathfrak { m } \} $ .
If $ x \in \mathfrak { m } $ , then $ x \not \in
R^ { \times } $ as otherwise $ xR = R
\implies \mathfrak { m} = R$ .
If $ x \not \in R ^ { \times } $ then $ xR $ is a proper ideal,
hence contained in
some maximal ideal.
Thus $ x \in \mathfrak { m } $ .
Assume that $ \mathfrak { m } = R \setminus
R^ { \times } $ is an ideal in $ R$ .
As $ 1 \in R ^ { \times } $ this is a proper ideal.
If $ I $ is any proper ideal and $ x \in I $ , then $ x \in \mathfrak { m } $ .
Hence $ R = xR \subseteq I \subseteq \mathfrak { m } $ .
It follows that $ \mathfrak { m } $ is the only maximal ideal of $ R $ .
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { remark}
\begin { itemize}
2022-02-16 05:19:03 +01:00
\item
Any field is a local ring ($ \mathfrak { m } _ K = \{ 0 \} $ ).
\item
The null ring is not local as it has no maximal ideals.
2022-02-16 02:31:15 +01:00
\end { itemize}
\end { remark}
\subsubsection { Localization at a prime ideal}
2022-02-16 05:19:03 +01:00
Many questons of commutative algebra are easier in the case of local rings.
Localization at a prime ideal is a technique to reduce a problem to this case.
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
\begin { proposition} [Localization at a prime ideal]
\label { locatprime}
Let $ A $ be a ring and $ \fp \in \Spec A $ .
Then $ S \coloneqq A \setminus \fp $ is a multiplicative subset, $ A _ S $ is a local
ring with maximal ideal $ \mathfrak { m } = \fp _ S
=\{ \frac { p} { s} | p \in \fp , s \in
S\} $ .
2022-02-16 02:31:15 +01:00
We have a bijection
\begin { align}
2022-02-16 05:19:03 +01:00
f: \Spec A_ S & \longrightarrow \{ \fq \in
\Spec A | \fq \subseteq \fp \} \\ \fr & \longmapsto \fr \sqcap A\\ \fq _ S
\coloneqq \left \{ \frac { q} { s} | q \in \fq , s \in S\right \} & \longmapsfrom \fq
2022-02-16 02:31:15 +01:00
\end { align}
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
It is clear that $ S $ is a
multiplicative subset and that $ \fp _ S $ is an ideal.
By
\ref { ssatiis} $ \frac { a } { s } \in \fp _ S \iff a \in \fp
\iff a \in A \setminus
S$ for all $ a \in A, s \in S$ .
Thus, if $ \frac { a } { s } \not \in \fp _ S $ then it is a unit in $ A _ S $
with inverse
$ \frac { s } { a } $ .
Hence $ A _ S $ is a local ring with maximal ideal $ \fp _ S $ .
The claim about $ \Spec A _ S $ follows from
\ref { idealslocbij} using the fact
(
\ref { primeidealssat} ) that a prime ideal $ \fr \in \Spec A $ is $ S $ -saturated
iff it is disjoint from $ S = A \setminus \fp $ iff $ \fr \subseteq \fp $ .
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { definition}
2022-02-16 05:19:03 +01:00
The ring $ A _ S $ as in
\ref { locatprime} is called the
\vocab [Localization] { localization of $ A $ at the prime ideal $ \fp $ } and denoted
$ A _ \fp $ .
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { remark}
2022-02-16 05:19:03 +01:00
This introduces no ambiguity because a prime ideal is never a multiplicative
subset.
2022-02-16 02:31:15 +01:00
\end { remark}
% More remarks on localization at a prime ideal
\begin { remark}
2022-02-16 05:19:03 +01:00
Let $ B = \mathfrak { k } [ X _ 1 , \ldots ,X _ n ] $ , $ x \in \mathfrak { k } ^ n $ and
$ \mathfrak { m } $ the maximal ideal such that
$ V ( \mathfrak { m } ) = \{ x \} $ .
The elements of $ B _ \mathfrak { m } $ are the fractions
$ \frac { b } { s } , b \in B, s \in
B \setminus \mathfrak { m} $ , i.e. $ s(x) \neq 0$ .
These are precisely the rational functions which are well-defined in some
neighbourhood of $ x $ .
This will be rigorously formulated in
\ref { proplocalring} .
2022-02-16 02:31:15 +01:00
%Hence the name localization.
\end { remark}
\begin { remark}
2022-02-16 05:19:03 +01:00
Let $ Y = V ( \fp ) \subseteq \mathfrak { k } ^ n $ be an irreducible subset
of
$ \mathfrak { k } ^ n $ .
Elements of $ B _ \fp $ are the fractions $ \frac { b } { s } , s \not \in \fp $ ,
i.e. $ s $
does not vanish identically on $ Y $ .
Thus, $ B _ \fp $ is the ring of rational functions on $ \mathfrak { k } ^ n $
which are
well defined on some open subset $ U $ intersecting $ Y $ .
As $ Y $ is irreducible, the intersection of two such subsets still intersects
$ Y $ .
2022-02-16 02:31:15 +01:00
\end { remark}
\begin { remark}
2022-02-16 05:19:03 +01:00
For arbitrary $ A $ , we have a bijection $ \Spec A _ \fp \cong N = \{ \fq \in \Spec
A | \fp \subseteq \fp \} $ .
One can show that $ N $ is the intersection of all neighbourhoods of $ \fp $ in
$ \Spec A $ , confirming the intuition that ``the localization sees things which
go on in arbitrarily small neighbourhoods of $ \fp $ ''.
2022-02-16 02:31:15 +01:00
\end { remark}
\begin { remark}
If $ A $ is a domain and $ \fp = \{ 0 \} $ , then $ A _ \fp = Q ( A ) $ .
\end { remark}
\subsection { Going-up and going-down}
2022-02-16 05:19:03 +01:00
\begin { definition} [Going-up and going-down]
\label { goupgodown}
2022-02-16 02:31:15 +01:00
Let $ R $ be a ring and $ A $ an $ R $ -algebra.
2022-02-16 05:19:03 +01:00
\vocab { Going-up} holds for $ A / R $ if for arbitrary $ \fq \in \Spec A $
and arbitrary $ \tilde \fp \in \Spec R $ with $ \tilde \fp \supseteq \fq \sqcap R $
there exists $ \tilde \fq \in \Spec A $ with $ \fq \subseteq \tilde \fq $ and
$ \tilde \fp = \tilde \fq \sqcap R $ .
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
(We are given $ \fp \subseteq \tilde \fp $ and $ \fq $ such that $ \fp = \fq
\sqcap R$ and must make $ \fq $ larger ) .
2022-02-16 02:31:15 +01:00
\[
\begin { tikzcd}
\fq \arrow [mapsto] { d} { \cdot \sqcap R} & \subseteq & { \color { blue} \tilde \fq } \arrow [mapsto] { d} { \cdot \sqcap R} & \in \Spec A\\
\fq \sqcap R = \fp & \subseteq & \tilde \fp & \in \Spec R
\end { tikzcd}
2022-02-16 05:19:03 +01:00
\]
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
\vocab { Going-down} holds for $ A / R $ if for arbitrary $ \tilde \fq \in
\Spec A$ and arbitrary $ \fp \in \Spec R$ with $ \fp \subseteq \tilde \fq \sqcap
R$ , there exists $ \fq \in \Spec A$ with $ \fq \subseteq \tilde \fq $ and $ \fp =
\fq \sqcap R$ .
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
(We are given $ \fp \subseteq \tilde \fp $ and $ \tilde \fq $ such that $ \tilde
\fp = \tilde \fq \sqcap R$ and must make $ \tilde \fq $ smaller ) .
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
\begin { tikzcd} { \color { blue} \fq } \arrow [mapsto] { d} { \cdot \sqcap R} & \subseteq & \tilde \fq \arrow [mapsto] { d} { \cdot \sqcap R} & \in \Spec A\\
2022-02-16 02:31:15 +01:00
\fp & \subseteq & \tilde \fp = \tilde \fq \sqcap R & \in \Spec R
\end { tikzcd}
2022-02-16 05:19:03 +01:00
\]
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { remark}
2022-02-16 05:19:03 +01:00
In the situation of
\ref { goupgodown} , we say $ \fq \in \Spec A $
\vocab [Primeideal!
lies above]{ lies above} $ \fp \in \Spec R $ if $ \fq \sqcap R = \fp $ .
2022-02-16 02:31:15 +01:00
\end { remark}
\subsubsection { Going-up for integral ring extensions}
\begin { theorem} [Krull, Cohen-Seidenberg]
\label { cohenseidenberg}
2022-02-16 05:19:03 +01:00
Let $ A $ be a ring and $ R \subseteq A $ a subring such that $ A $ is integral over
$ R $ .
2022-02-16 02:31:15 +01:00
\begin { enumerate} [A]
2022-02-16 05:19:03 +01:00
\item
The map $ \Spec A \xrightarrow { \fq \mapsto \fq \cap R } \Spec R $ is surjective.
\item
For $ \fp \in \Spec R $ , there are no inclusions between the prime ideals $ \fp
\in \Spec A$ lying over $ \fp $ .
\item
Going-up holds for $ A / R $ .
\item
$ \fq \in \Spec A $ is maximal iff $ \fp \coloneqq \fq \cap R $ is a maximal ideal
of $ R $ .
2022-02-16 02:31:15 +01:00
\end { enumerate}
\end { theorem}
\begin { proof}
% uses localization at prime ideals
\begin { enumerate}
2022-02-16 05:19:03 +01:00
\item [D]
Consider the ring extension $ A / \fq $ of $ R / \fp $ .
Both rings are domains and the extension is integral.
By the fact about integrality and fields (
\ref { fintaf} ) $ A / \fq $
is a field
iff $ R / \fp $ is a field.
Thus $ \fq \in \MaxSpec A \iff \fp \in \MaxSpec R $ .
\item [A]
Suppose $ \fp \in \Spec R $ and let $ S \coloneqq R \setminus \fp $ .
Then $ S $ is a multiplicative subset of both $ R $ and $ A $ , and we may consider
the localizations $ R \xrightarrow { \rho } R _ \fp , A \xrightarrow { \alpha }
A_ \fp $
with respect to $ S $ .
By the universal property of $ \rho $ , there exists a unique homomorphism $ R _ \fp
\xrightarrow { i} A_ \fp $ such that $ i\rho = \alpha
\defon { R} $ .
We have $ j ( \frac { r } { s } ) = \frac { r } { s } $ and $ j $ is
easily seen to be injective.
2022-02-16 02:31:15 +01:00
\[
\begin { tikzcd}
2022-02-16 05:19:03 +01:00
R \arrow { r} { \rho } \arrow [hookrightarrow] { d} { \subseteq } & R_ \fp
\arrow [hookrightarrow, dotted] { d} { \existsone i} \\ A \arrow { r} { \alpha } & A_ \fp
2022-02-16 02:31:15 +01:00
\end { tikzcd}
\]
2022-02-16 05:19:03 +01:00
\begin { claim}
$ A _ \fp $ is integral over $ R _ \fp $ .
\end { claim}
\begin { subproof}
An element $ x \in A _ \fp $ has the form $ x = \frac { a } { s } $ for some
$ s \in R
\setminus \fp $ and where $ a \in A$ is integral over $ R$ .
Hence $ a ^ n = \sum _ { i = 0 } ^ { n - 1 } r _ ia ^ i $ for some $ r _ i \in R $ .
Thus $ x ^ n = \sum _ { i = 0 } ^ { n - 1 } \rho _ i x ^ i $ with $ \rho _ i \coloneqq
s^ { i-n} r_ i \in
R_ \fp $ .
\end { subproof}
As $ i $ is injective and $ R _ \fp \neq \{ 0 \} $ ($ R _ \fp $ is local!
) $ A _ \fp \neq \{ 0 \} $ , there is $ \mathfrak { m } \in \MaxSpec A _ \fp $ .
D has already been shown and applies to $ A _ \fp / R _ \fp $ , hence
$ i ^ { - 1 } ( \mathfrak { m } ) = \fp _ \fp $ is the
only maximal ideal of the local ring
$ R _ \fp $ .
Hence $ \fq = \alpha ^ { - 1 } ( \mathfrak { m } ) $ satisfies
\[
\fq \cap R =
\alpha ^ { -1} (\mathfrak { m} ) \cap R = \rho ^ { -1} (i^ { -1}
(\mathfrak { m} )) =
\rho ^ { -1} (\fp _ \fp ) = \fp
\]
\item [B]
The map $ \Spec A _ \fp
\xrightarrow { \alpha ^ { -1} } \Spec A$ is injective with image equal to $ \{ \fq \in
\Spec A | \fq \cap R \subseteq \fp \} $ .
In particular, it contains the set of all $ \fq $ lying over $ \fp $ .
If $ \fq = \alpha ^ { - 1 } ( \fr ) $ lies over $ \fp $ , then
\[
\rho ^ { -1} (i^ { -1} (\fr )) =
(\alpha ^ { -1} (\fr )) \cap R = \fq \cap R = \fp = \rho ^ { -1} (\fp _ \fp )
\]
hence
$ i ^ { - 1 } ( \fr ) = \fp _ \fp $ by the injectivity of $ \Spec
R_ \fp
\xrightarrow { \rho ^ { -1} } \Spec R$ .
Because D applies to the integral ring extension $ A _ \fp / R _ \fp $ and $ \fp _ \fp
\in \MaxSpec R_ \fp $ , $ \fr $ is a maximal ideal.
There are thus no inclusions between different such $ \fr $ .
Because $ \Spec A _ \fp \xrightarrow { \alpha ^ { - 1 } } \Spec A $ is
$ \subseteq $ -monotonic and injective, there are no inclusions between different
$ \fp \in \Spec A $ lying over $ \fp $ .
\item [C]
Let $ \fp \subseteq \tilde \fp $ be prime ideals of $ R $ and $ \fq \in \Spec A $
such that $ \fq \cap R = \fp $ .
By applying A to the ring extension $ A / \fq $ of $ R / \fp $ , there is $ \fr \in
\Spec A /\fq $ such that $ \fr \sqcap R / \fp = \tilde \fp / \fp $ .
The preimage $ \tilde \fq $ of $ \fr $ under $ A \to A / \fq $ satisfies $ \fq
\subseteq \tilde \fq $ and $ \tilde \fq \cap R = \tilde \fp $ .
\end { enumerate}
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { remark}
2022-02-16 05:19:03 +01:00
The proof of
\ref { cohenseidenberg} does not use Noetherianness, as this is
not
an assumption.
2022-02-16 02:31:15 +01:00
\end { remark}
\subsubsection { Application to dimension theory: Proof of \texorpdfstring { $ \dim Y = \trdeg ( \mathfrak { K } ( Y ) / \mathfrak { k } ) $ } { dim Y = trdeg(K(Y) / k)} }
\label { lowerbounddimy}
2022-02-16 05:19:03 +01:00
This is part of the proof of
\ref { trdegandkdim} .
2022-02-16 02:31:15 +01:00
%It uses going-up.
%TODO: relate to \ref{htandcodim}
\begin { proof}
2022-02-16 05:19:03 +01:00
Let $ B = \mathfrak { k } [ X _ 1 , \ldots ,X _ n ] $ and let $ X \subseteq Y \subseteq
\mathfrak { k} ^ n$ be irreducible closed subsets of
$ \mathfrak { k } ^ n $ .
We have to show $ \codim ( X,Y ) = \trdeg ( \mathfrak { K } ( Y ) / \mathfrak { k } ) -
\trdeg (\mathfrak { K} (X) \setminus \mathfrak { k} )$ .
2022-02-16 02:31:15 +01:00
The inequality
2022-02-16 05:19:03 +01:00
\[
\codim (X,Y) \le \trdeg (\mathfrak { K} (Y) \setminus
\mathfrak { k} ) -
\trdeg (\mathfrak { K} (X) \setminus \mathfrak { k} )
\]
has been
shown in
\ref { upperboundcodim} .
In the case of $ X = \{ 0 \} , Y = \mathfrak { k } ^ n $ , equality holds
because the
chain of irreducible subsets $ \{ 0 \} \subsetneq \{ 0 \} \times
\mathfrak { k}
\subsetneq \ldots \subsetneq \{ 0\} \times \mathfrak { k} ^ n\subsetneq
\mathfrak { k} ^ n$ can be written down explicitely.
We have $ Y = V ( \fp ) $ for a unique $ \fp \in \Spec B $ .
Let $ A = B / \fp $ be the ring of polynomials on $ Y $ .
Apply the Noether normaization theorem to $ A $ .
This yields $ ( f _ i ) _ { i = 1 } ^ d \in A ^ d $ which are
algebraically independent over
$ \mathfrak { k } $ and such that $ A $ is finite over the subalgebra
generated by the
$ f _ i $ .
Let $ L $ be the algebraic closure in $ \mathfrak { K } ( Y ) $ of the subfield
of
$ \mathfrak { K } ( Y ) $ generated by $ \mathfrak { k } $ and the
$ f _ i $ .
We have $ A \subseteq L $ and since $ \mathfrak { K } ( Y ) = Q ( B / \fp ) =
Q(A)$ \footnote { by definition } it follows that $ \mathfrak { K} (Y) = L$ .
Hence $ ( f _ i ) _ { i = 1 } ^ d $ is a transcendence base
for $ \mathfrak { K } ( y ) /
\mathfrak { k} $ and $ d = \trdeg \mathfrak { K} (Y) /
\mathfrak { k} $ .
2022-02-16 02:31:15 +01:00
\begin { align}
2022-02-16 05:19:03 +01:00
\mathfrak { k} [X_ 1,\ldots ,X_ d] & \longrightarrow R \\
P & \longmapsto P(f_ 1,\ldots ,f_ d)
2022-02-16 02:31:15 +01:00
\end { align}
2022-02-16 05:19:03 +01:00
is an isomorphism and in $ \mathfrak { k } [ X _ 1 , \ldots ,X _ d ] $ there is a strictly
ascending chain of prime ideals corresponding to $ \mathfrak { k } ^ d
\supsetneq \{ 0\} \times \mathfrak { k} ^ { d-1} \supsetneq \ldots \supsetneq
\{ 0\} $ .
Thus there is a strictly ascending chain $ \{ 0 \} = \fp _ 0 \subsetneq \fp _ 1
\subsetneq \ldots \subsetneq \fp _ d$ of elements of $ \Spec R$ .
Let $ \fq _ 0 = \{ 0 \} \in \Spec A $ .
If $ 0 < i \le d $ and a chain $ \fq _ 0 \subsetneq \ldots \subsetneq
\fq _ { i-1} $ in
$ \Spec A $ with $ \fq _ j \cap R = \fp _ j $ for $ 0 \le j < i $ has been selected, we
may apply going-up (
\ref { cohenseidenberg} ) to $ A / R $ to extend this chain
by a
$ \fq _ i \in \Spec A $ with $ \fq _ { i - 1 } \subseteq \fq _ i $ and $ \fq _ i
\cap R =
\fp _ i$ ( thus $ \fq _ { i-1} \subsetneq \fq _ i$ as $ \fp -i \neq
\fp _ { i-1} )$ .
Thus, we have a chain $ \fq _ 0 = \{ 0 \} \subsetneq \ldots \subsetneq \fq _ d $ in
$ \Spec A $ .
Let $ \tilde \fq _ i \coloneqq \pi _ { B, \fp } ^ { - 1 } ( \fq _ i ) , Y _ i \coloneqq V ( \tilde
\fq _ i)$ .
This is a chain $ Y = Y _ 0 \supsetneq Y _ 1 \supsetneq \ldots \supsetneq Y _ d $ of
irreducible subsets of $ \mathfrak { k } ^ n $ .
2022-02-16 02:31:15 +01:00
Hence $ \dim ( Y ) \ge \trdeg ( \mathfrak { K } ( Y ) / \mathfrak { k } ) $ .
2022-02-16 05:19:03 +01:00
The general case of $ \codim ( X,Y ) \ge \trdeg ( \mathfrak { K } ( Y ) / \mathfrak { k } ) -
\trdeg (\mathfrak { K} (X) \setminus \mathfrak { k} )$ is shown in
\ref { proofcodimletrdeg} .
2022-02-16 02:31:15 +01:00
% TODO: reorder
% TODO: Motivation: "Morphism" (AlGeo) and Lift of {0} x k \subseteq \ldots
\end { proof}
% Lecture 08
\subsubsection { Prime avoidance}
2022-02-16 05:19:03 +01:00
\begin { proposition} [Prime avoidance]
\label { primeavoidance}
Let $ A $ be a ring and $ I \subseteq A $ a subset which is closed under arbitrary
finite sums and non-empty products, for instance, an ideal in $ A $ .
Let $ ( \fp _ i ) _ { i = 1 } ^ n $ be a finite list of
ideals in $ A $ of which at most two
fail to be prime ideals and such that there is no $ i $ with $ I \subseteq \fp _ i $ .
Then $ I \not \subseteq \bigcup _ { i = 1 } ^ n \fp _ i $ .
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
Induction on $ n $ .
The case of $ n < 2 $ is trivial.
Let $ n \ge 2 $ and the assertion be shown for a list of $ n - 1 $ ideals one wants
to avoid.
If $ n \ge 3 $ we may, by reordering the $ \fp _ i $ assume that $ \fp _ 1 $ is a prime
ideal.
By the induction assumption, there is $ f _ k \in I \setminus
\bigcup _ { j \neq k}
\fp _ j$ .
If there is $ k $ with $ 1 \le k \le n $ and $ f _ k \not \in \fp _ k $ , then the proof is
finished.
Otherwise
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
f_ 1 + \prod _ { j=2} ^ { n} f_ j \in I \setminus \bigcup _ { j=1} ^ n
\fp _ j
\]
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\subsubsection { The fixed field of the automorphism group of a normal field
extension}
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
Recall the definition of a normal field extension in the case of finite field
extensions:
2022-02-16 02:31:15 +01:00
\begin { definition}
2022-02-16 05:19:03 +01:00
A finite field extension $ L / K $ is called
\vocab { normal} , if the following equivalent conditions hold:
2022-02-16 02:31:15 +01:00
\begin { enumerate}
2022-02-16 05:19:03 +01:00
\item [A]
Let $ \overline { K } / K $ be an algebraic closure of $ K $ .
Then any two expansions of $ \Id _ K $ to a ring homomorphism $ L \to
\overline { K} $
have the same image.
\item [B]
If $ P \in K [ T ] $ is an irreducible polynomial and $ P $
has a zero in $ L $ , then $ P $ splits into linear factors.
\item [C]
$ L $ is the splitting field of a $ P \in K [ T ] $ .
2022-02-16 02:31:15 +01:00
\end { enumerate}
\end { definition}
2022-02-16 05:19:03 +01:00
\begin { fact}
\label { fnormalfe}
For an arbitrary algebraic field extension $ L / K $ , the following conditions
are equivalent:
2022-02-16 02:31:15 +01:00
\begin { itemize}
2022-02-16 05:19:03 +01:00
\item
$ L $ is the union of its subfields which
contain $ K $ and are finite and normal over $ K $ .
\item
If $ P \in K [ T ] $ is normed, irreducible over $ K $ and
has a zero in $ L $ , then it splits into linear factors in $ L $ .
\item
If $ \overline { L } $ is an algebraic closure of $ L $ , then all
extensions of $ \Id _ K $ to a ring homomorphism $ L \to \overline { L } $
have the same image.
2022-02-16 02:31:15 +01:00
\end { itemize}
\end { fact}
\begin { definition} [Normal field extension]
2022-02-16 05:19:03 +01:00
An algebraic field extension\footnote { not necessarily finite} $ L
/ K$ is called \vocab { normal } if
the equivalent conditions from
\ref { fnormalfe} hold.
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { definition}
2022-02-16 05:19:03 +01:00
Suppose $ L / K $ is an arbitrary field extension.
Let $ \Aut ( L / K ) $ be the set of automorphisms of $ L $ leaving all
elements of
(the image in $ L $ of) $ K $ fixed.
Let $ G \subseteq \Aut ( L / K ) $ be a subgroup.
Then the \vocab { fixed field } is definied as
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
L^ G \coloneqq \{ l \in L |
\forall g \in G : g(l) = l\}
\]
2022-02-16 02:31:15 +01:00
\end { definition}
2022-02-16 05:19:03 +01:00
\begin { proposition}
\label { characfixnormalfe} Let $ L / K $ be a normal field
extension.
If the characteristic of the fields is $ O $ , then
$ L ^ { \Aut ( L / K ) } = K $ .
If the characteristic is $ p > 0 $ , then $ L ^ { \Aut ( L / K ) } = \{ l
\in L | \exists n
\in \N ~ l^ { p^ n} \in K\} $ .
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
In both cases $ L ^ G \supseteq $ is easy to see.
2022-02-16 05:19:03 +01:00
If $ K \subseteq M \subseteq L $ is an intermediate field, then $ L $ is normal
over $ M $ .
If $ \sigma \in \Aut ( M / K ) $ , an application of Zorn's lemma to
the set of all
$ ( N, \vartheta ) $ where $ N $ is an intermediate field $ M \subseteq N \subseteq L $
and $ N \xrightarrow { \vartheta } L $ a ring homomorphism such that
$ \vartheta \defon { M } = \sigma $ shows that $ \sigma $ has an
extension to an
element of $ \Aut ( L / K ) $ .
% TODO make this rigorous
If $ M $ is normal over $ K $ , it is easily seen to be $ \Aut ( L / K ) $
invariant.
Thus $ L ^ G $ is the union of $ M ^ { \Aut ( M / K ) } $ over all
intermediate fields which
are finite and normal over $ K $ , and it is sufficient to show the proposition
for finite normal extensions $ L / K $ .
2022-02-16 02:31:15 +01:00
\begin { itemize}
2022-02-16 05:19:03 +01:00
\item
Characteristic $ 0 $ : The extension is normal, hence Galois, and the assertion
follows from Galois theory.
\item
Characteristic $ p > 0 $ : Let $ l \in L ^ G $ and $ P \in
K[T]$ be the minimal polynomial of $ l$ over $ K$ .
We show that $ l ^ { p ^ n } \in K $ for some $ n \in \N $ by
induction on $ \deg ( l / K )
\coloneqq \deg (P)$ .
If $ \deg ( l / K ) = 1 $ , we have $ l \in K $ .
Otherwise, assume that the assertion has been shown for elements of $ L ^ G $ whose
degree over $ K $ is smaller than $ \deg ( l / K ) $ .
Let $ \overline { L } $ be an algebraic closure of $ L $ and $ \lambda $ a
zero of $ P $
in $ \overline { L } $ .
If $ M = K ( l ) \subseteq L $ , then there is a ring homomorphism $ M -
\overline { L} $
sending $ l $ to $ \lambda $ .
This can be extended to a ring homomorphism $ L \xrightarrow { \sigma }
\overline { L} $ .
We have $ \sigma \in G $ because $ L / K $ is normal.
Hence $ \lambda = \sigma ( l ) = l $ , as $ l \in L ^ G $ .
Thus $ l $ is the only zero of $ P $ in $ \overline { L } $ and because $ \deg
P >1$ it
is a multiple zero.
It is shown in the Galois theory lecture that this is possible only when $ P ( T )
= Q(T^ p)$ for some $ Q \in K[T]$ .
% TODO: link to EinfAlg
Then $ Q ( l ^ p ) = 0 $ and the induction assumption can be applied to $ x = l ^ p $
showing $ x ^ { p ^ m } \in K $ hence
$ l ^ { p ^ { m + 1 } } \in K $ for some $ m \in \N $ .
\end { itemize}
2022-02-16 02:31:15 +01:00
\end { proof}
\subsubsection { Integral closure and normal domains}
\begin { definition} [Integral closure, normal domains]
2022-02-16 05:19:03 +01:00
Let $ A $ be a domain with field of quotients $ Q ( A ) $ and
let $ L $ be a field extension of $ Q ( A ) $ .
By
\ref { intclosure} the set of elements of $ L $ integral over $ A $ is a
subring
of $ L $ , the \vocab { integral closure} of $ A $ in $ L $ .
$ A $ is \vocab { Domain!integrally closed} in $ L $ if the integral closure of $ A $ in $ L $
equals $ A $ .
2022-02-16 02:31:15 +01:00
$ A $ is \vocab { Domain!normal} if it is integrally closed in $ Q ( A ) $ .
\end { definition}
2022-02-16 05:19:03 +01:00
\begin { proposition}
\label { ufdnormal}
2022-02-16 02:31:15 +01:00
Any factorial domain (UFD) is normal.
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
Let $ x \in Q ( A ) $ be integral over $ A $ .
Then there is a normed polynomial $ P \in A [ T ] $ with
$ P ( x ) = 0 $ .
In EInführung in die Algebra it was shown that $ A [ T ] $
is a UFD and that the
prime elements of $ A [ T ] $ are the elements which are
irreducible in $ Q ( A ) [ T ] $
and for which the $ \gcd $ of the coefficients is $ \sim 1 $ .
% TODO reference
The prime factors of a normed polynomial are all normed up to multiplicative
equivalence.
We may thus assume $ P $ to be irreducible in
$ Q ( A ) [ T ] $ .
But then $ \deg P = 1 $ as $ x $ is a zero of $ P $ in $ Q ( A ) $ , hence $ P ( T ) = T - x $
and $ x \in A $ as $ P \in A [ T ] $ .
Alternative
proof\footnote { \url { http://www.math.lsa.umich.edu/~tfylam/Math221/2.pdf} } : Let
$ x = \frac { a } { b } \in Q ( A ) $ be integral over $ A $ .
Without loss of generality loss of generality $ \gcd ( a,b ) = 1 $ .
Then $ x ^ n + c _ { n - 1 } x ^ { n - 1 } +
\ldots + c_ 0 = 0$ for some $ c_ i \in A$ .
Multiplication with $ b ^ n $ yields $ a ^ n + c _ { n - 1 } b
a^ { n-1} + \ldots +c_ 0 b^ n =
0$ .
Thus $ b | a ^ n $ .
Since $ \gcd ( a,b ) = 1 $ it follows that $ b $ is a unit, hence $ x \in
A$ .
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { remark}
2022-02-16 05:19:03 +01:00
It follows from
\ref { cintclosure} and
\ref { locandquot} that
the integral
closure of $ A $ in some field extension $ L $ of $ Q ( A ) $ is always normal.
2022-02-16 02:31:15 +01:00
\end { remark}
\begin { remark}
2022-02-16 05:19:03 +01:00
A finite field extension of $ \Q $ is called an \vocab { algebraic number field}
(ANF).
If $ K $ is an ANF, let $ \mathcal { O } _ K $ (the
\vocab [Ring of integers in an
ANF]{ ring of integers in $ K $ } ) be the integral closure of $ \Z $ in $ K $ .
One can show that this is a finitely generated (hence free, by results of
EInführung in die Algebra ) abelian group.
% EINFALG
2022-02-16 02:31:15 +01:00
We have $ \mathcal { O } _ { \Q } = \Z $ by the proposiiton.
\end { remark}
\subsubsection { Action of \texorpdfstring { $ \Aut ( L / K ) $ } { Aut(L / K)} on prime ideals of a normal ring extension}
2022-02-16 05:19:03 +01:00
\begin { theorem}
\label { autonprime}
Let $ A $ be a normal domain, $ L $ a normal field extension of $ K \coloneqq Q ( A ) $ ,
$ B $ the integral closure of $ A $ in $ L $ and $ \fp \in \Spec A $ .
Then $ G \coloneqq \Aut ( L / K ) $ transitively acts on $ \{ \fq \in
\Spec B | \fq
\cap A = \fp \} $ .
2022-02-16 02:31:15 +01:00
\end { theorem}
\begin { proof}
Let $ \fq , \fr $ be prime ideals of $ B $ above the given $ \fp \in \Spec A $ .
2022-02-16 05:19:03 +01:00
We must show that there exists $ \sigma \in G $ such that $ \fq =
\sigma (\fr )$ .
This is equivalent to $ \fq \subseteq \sigma ( \fr ) $ , since the Krull
going-up
theorem (
\ref { cohenseidenberg} ) applies to the integral ring extension $ B /
A$ ,
showing that there are no inclusions between different elements of $ \Spec B $
lying above $ \fp \in \Spec A $ .
If $ L / K $ is finite and there is no such $ \sigma $ , then by prime avoidance
(
\ref { primeavoidance} ) there is $ x \in \fq \setminus
\bigcup _ { \sigma \in G}
\sigma (\fr )$ .
As $ \fr $ is a prime ideal, $ y = \prod _ { \sigma \in G } \sigma ( x )
\in \fq
\setminus \fr $ .
\footnote { $ \prod _ { \sigma \in G } \sigma ( x ) = \prod _ { \sigma \in G }
\sigma ^ { -1} (x)$ }
By the characterization of $ L ^ G $ for normal field extensions
(
\ref { characfixnormalfe} ), there is a positive integer $ k $ with $ y ^ k \in K $ .
2022-02-16 02:31:15 +01:00
As $ A $ is normal, we have $ y ^ k \in K \cap B = A $ .
2022-02-16 05:19:03 +01:00
Thus $ y ^ k \in ( A \cap \fq ) \setminus ( A \cap \fr ) = \fp \setminus \fp =
\emptyset \lightning $ .
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
If $ L / K $ is not finite, one applies Zorn's lemma to the poset of pairs $ ( M,
\sigma )$ where $ M$ is an intermediate field and $ \sigma \in
\Aut (M / K)$ such
that $ \sigma ( \fr \cap M ) = \fq \cap M $ .
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { remark}
2022-02-16 05:19:03 +01:00
The theorem is very important for its own sake.
For instance, if $ K $ is an ANF which is a Galois extension of $ \Q $ it shows
that $ \Gal ( K / \Q ) $ transitively acts on the set of prime ideals of
$ \mathcal { O } _ K $ over a given prime number $ p $ .
More generally, if $ L / K $ is a Galois extension of ANF then
$ \Gal ( L / K ) $
transitively acts on the set of $ \fq \in \Spec \mathcal { O } _ L $ for
which $ \fq
\cap K$ is a given $ \fp \in \Spec \mathcal { O} _ K$ .
2022-02-16 02:31:15 +01:00
\end { remark}
\subsubsection { A going-down theorem}
2022-02-16 05:19:03 +01:00
\begin { theorem} [Going-down for integral extensions of normal domains (Krull)]
\label { gdkrull}
Let $ B $ be a domain which is integral over its subring $ A $ .
If $ A $ is a normal domain, then going-down holds for $ B / A $ .
2022-02-16 02:31:15 +01:00
\end { theorem}
\begin { proof}
2022-02-16 05:19:03 +01:00
It follows from the assumptions that the field of quotients $ Q ( B ) $ is an
algebraic field extension of $ Q ( A ) $ .
There is an algebraic extension $ L $ of $ Q ( B ) $ such that $ L / Q ( A ) $ is normal
(for instance an algebraic closure of $ Q ( B ) $ ).
Let $ C $ be the integral closure of $ A $ in $ L $ .
Then $ B \subseteq C $ and $ C / B $ is integral.
\[
\begin { tikzcd}
Q(A) \arrow [hookrightarrow] { r} { } & Q(B) \arrow [hookrightarrow] { r} { } & L
\coloneqq \overline { Q(B)} \\ A
\arrow [hookrightarrow] { u} { } \arrow [hookrightarrow] { r} { } & B
\arrow [hookrightarrow] { r} { } \arrow [hookrightarrow] { u} { } & C
\arrow [hookrightarrow] { u} { } \\
\end { tikzcd}
\]
2022-02-16 02:31:15 +01:00
\begin { claim}
Going-down holds for $ C / A $ .
\end { claim}
\begin { subproof}
2022-02-16 05:19:03 +01:00
Let $ \fp \subseteq \tilde \fp $ be an inclusion of prime ideals of $ A $ and
$ \tilde \fr \in \Spec C $ with $ \tilde \fr \cap A = \tilde \fp $ .
By going-up for integral ring extensions (
\ref { cohenseidenberg} ), $ \Spec C
\xrightarrow { \cdot \cap A} \Spec A$ is surjectiv.
Thus there is $ \fr ' \in \Spec C $ such that $ \fr ' \cap A = \fp $ .
By going up for $ C / A $ there is $ \tilde \fr ' \in \Spec C $ with $ \tilde \fr '
\cap A = \tilde \fp , \fr ' \subseteq \tilde \fr '$ .
By the theorem about the action of the automorphism group on prime ideals of a
normal ring extension (
\ref { autonprime} ) there exists a $ \sigma \in
\Aut (L /
Q(A))$ with $ \sigma (\tilde \fr ') = \tilde \fr $ .
Then $ \fr \coloneqq \sigma ( \fr ' ) $ satisfies $ \fr \subseteq \tilde
\fr $ and $ \fr
\cap A = \fp $ .
2022-02-16 02:31:15 +01:00
\end { subproof}
2022-02-16 05:19:03 +01:00
If $ \fp \subseteq \tilde \fp $ is an inclusion of elements of $ \Spec A $ and
$ \tilde \fq \in \Spec B $ with $ \tilde \fp \cap A = \tilde \fp $ , by the
surjectivity of $ \Spec C \xrightarrow { \cdot \cap B } \Spec B $
(
\ref { cohenseidenberg} ) there is $ \tilde \fr \in \Spec C $ with $ \tilde \fr
\cap
B = \fq $ .
By going-down for $ C / A $ , there is $ \fr \in \Spec C $ with $ \fr \subseteq
\tilde \fr $ and $ \fr \cap A = \fp $ .
Then $ \fq \coloneqq \fr \cap B \in \Spec B, \fq \subseteq \tilde \fq $ and $ \fq
\cap A = \fp $ .
Thus going-down holds for $ B / A $ .
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { remark} [Universally Japanese rings]
2022-02-16 05:19:03 +01:00
A Noetherian ring $ A $ is called universally Japanese
if for every $ \fp \in \Spec A $ and every finite field extension $ L $ of
$ \mathfrak { k } ( \fp ) $ , the integral closure of $ A / \fp $ in $ L $ is a
finitely generated $ A $ -module.
This notion was coined by Grothendieck because the condition was extensively
studied by the Japanese mathematician Nataga Masayoshji.
By a hard result of Nagata, algebras of finite type over a universally Japanese
ring are universally Japanese.
2022-02-16 02:31:15 +01:00
Every field is universally Japanese, as is every PID of characteristic $ 0 $ .
2022-02-16 05:19:03 +01:00
There are, however, examples of Noetherian rings which fail to be universally
Japanese.
2022-02-16 02:31:15 +01:00
\end { remark}
2022-02-16 05:19:03 +01:00
\begin { example}
+[Counterexample to going down]
Let $ R = \mathfrak { k } [ X,Y ] $ and $ A = \mathfrak { k } [ X,Y, \frac { X } { Y } ] $ .
Then going down does not hold for $ A / R $ :
For any ideal $ Y \in \fq \subseteq A $ we have $ X = \frac { X } { Y }
\cdot Y \in
\fq $ .
Consider $ ( Y ) _ R \subsetneq ( X,Y ) _ R \subseteq \fq \cap R $ .
As $ ( X,Y ) _ R $ is maximal and the preimage of a prime ideal is prime and thus
proper, we have $ ( X,Y ) _ R = \fq \cap R $ .
The prime ideal $ ( \frac { X } { Y } ,Y ) _ A = ( \frac { X } { Y } ,
X,Y)_ A$ is lying over
$ ( X,Y ) _ R $ , so going down is violated.
2022-02-16 02:31:15 +01:00
\end { example}
2022-02-16 05:19:03 +01:00
\subsubsection { Proof of \texorpdfstring { $ \codim ( \{ y \} ,Y ) = \trdeg ( \mathfrak { K } ( Y ) /
\mathfrak { k} )$ } { codim ( \{ y \} ,Y ) = trdeg ( K ( Y ) / k ) } }
2022-02-16 02:31:15 +01:00
\label { proofcodimletrdeg}
2022-02-16 05:19:03 +01:00
This is part of the proof of
\ref { trdegandkdim} .
%TODO: reorder
2022-02-16 02:31:15 +01:00
\begin { proof}
% DIMT
2022-02-16 05:19:03 +01:00
Let $ B = \mathfrak { k } [ X _ 1 , \ldots ,X _ n ] $ and $ X \subseteq Y = V ( \fp ) \subseteq
\mathfrak { k} ^ n$ irreducible closed subsets of
$ \mathfrak { k } ^ n $ .
We want to show that $ \codim ( X,Y ) = \trdeg ( \mathfrak { K } ( Y ) / \mathfrak { k } ) -
\trdeg (\mathfrak { K} (X) / \mathfrak { k} )$ .
$ \le $ was shown in
\ref { upperboundcodim} .
$ \dim Y \ge \trdeg ( \mathfrak { K } ( Y ) / \mathfrak { k } ) $ was shown in
\ref { lowerbounddimy} by
Applying Noether normalization to $ A \coloneqq B / \fp $ , giving us
$ ( f _ i ) _ { i = 1 } ^ d \in A ^ d $ such that the $ f _ i $
are algebraically independent and
$ A $ finite over the subalgebra generated by them.
We then used going-up to lift a chain of prime ideals corresponding to
$ \mathfrak { k } ^ d \supsetneq \{ 0 \} \times \mathfrak { k } ^ { n - 1 }
\supsetneq \ldots
\supsetneq \{ 0\} $ under $ Y \xrightarrow { F = (f_ 1,\ldots ,f_ d)} \mathfrak { k} ^ d$
to a chain of prime ideals in $ A $ .
This was done left-to-right as going-up was used to make prime ideals larger.
In particular, when $ \{ 0 \} \in \mathfrak { k } ^ d $ has several preimages
under $ F $
we cannot control to which of them the maximal ideal terminating the lifted
chain belongs.
Thus, we can show that in the inequality
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
\codim (\{ y\} , Y) \le d =
\trdeg (\mathfrak { K} (Y) \setminus \mathfrak { k} )
\]
(see
\ref { upperboundcodim} )
equality holds for at least one pint $ y \in
F^ { -1} (\{ 0\} )$ but cannot rule out
that there are other $ y \in F ^ { - 1 } ( \{ 0 \} ) $ for which
the inequality becomes
strict.
However using going-down (
\ref { gdkrull} ) for $ F $ , we can use a
similar
argument, but start lifting of the chain at the right end for the point $ y \in
Y$ for which we would like to show equality.
From this $ \codim ( X,Y ) \ge \trdeg ( \mathfrak { K } ( Y ) / \mathfrak { k } ) -
\trdeg (\mathfrak { K} (X) / \mathfrak { k} )$ can be derived similarly to
\ref { upperboundcodim} .
Thus
\[
\codim (X,Y) = \trdeg (\mathfrak { K} (Y) / \mathfrak { k} ) -
\trdeg (\mathfrak { K} (X) / \mathfrak { k} )
\]
follows (see
\ref { htandcodim} and
\ref { htandtrdeg} ).
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { remark}
2022-02-16 05:19:03 +01:00
The going-down theorem used to prove this is somewhat more general, as it does
not depend on $ \mathfrak { k } $ being algebraically closed.
2022-02-16 02:31:15 +01:00
\end { remark}
% Lecture 09
% i = ic
\subsection { The height of a prime ideal}
2022-02-16 05:19:03 +01:00
In order to complete the proof of
\ref { proofcodimletrdeg} and show
$ \codim ( X,Y )
= \trdeg (\mathfrak { K} (Y) / \mathfrak { k} ) - \trdeg (\mathfrak { K} (X) /
\mathfrak { k} )$ , we need to localize
the $ \mathfrak { k } $ -algebra with respect to
a multiplicative subset and replace the ground field by a larger subfield of
that localization which is no longer algebraically closed.
To formulate a result which still applies in this context, we need the
following:
\begin { definition} [Height of a prime ideal] Let $ A $ be a ring, $ \fp
\in \Spec A$ .
We define the \vocab [Height of a prime ideal] { height of the prime ideal $ \fp $ } ,
$ \hght ( \fp ) $ , to be the largest $ k \in \N $ such that there is a
strictly
decreasing sequence $ \fp = \fp _ 0 \supsetneq \fp _ 1 \supsetneq \ldots \supsetneq
\fp _ k$ of prime ideals of $ A$ , or $ \infty $ if there is no finite upper bound on
the length of such sequences.
2022-02-16 02:31:15 +01:00
\end { definition}
\begin { example}
Let $ A = \mathfrak { k } [ X _ 1 , \ldots ,X _ n ] $ , $ X = V ( \fp ) $ for a prime ideal $ \fp $ .
2022-02-16 05:19:03 +01:00
By the correspondence between irreducible subsets of
$ \mathfrak { k } ^ n $ and prime
ideals in $ A $ (
\ref { bijiredprim} ), the $ \fp _ i $ correspond to irreducible
subsets $ X _ i \subseteq \mathfrak { k } ^ n $ containing $ X $ .
Thus $ \hght ( \fp ) = \codim ( X, \mathfrak { k } ^ n ) $ .
2022-02-16 02:31:15 +01:00
\end { example}
2022-02-16 05:19:03 +01:00
\begin { example}
\label { htandcodim}
Let $ B = \mathfrak { k } [ X _ 1 , \ldots ,X _ n ] , \fq \in \Spec B $ and let $ A \coloneqq B
/ \fp $ .
Let $ Y \coloneqq V ( \fq ) \subseteq \mathfrak { k } ^ n $ , $ \tilde \fp
\coloneqq
\pi _ { B, \fq } ^ { -1} (\fp )$ , where $ B \xrightarrow { \pi _ { B, \fp } } A $ is the
projection to the ring of residue classes, and let $ X = V ( \tilde \fp ) $ .
By
\ref { idealslocbij} we have a bijection between the prime ideals $ \fr
\subseteq \fp $ of $ A$ contained in $ \fp $ and the prime ideals and the prime
ideals $ \tilde \fr \in \Spec B $ with $ \fq \subseteq \tilde \fr \subseteq \tilde
\fp $ :
2022-02-16 02:31:15 +01:00
\begin { align}
2022-02-16 05:19:03 +01:00
f: \{ \fr \in \Spec A | \fr \subseteq \fp \}
& \longrightarrow \{ \tilde \fr \in \Spec B | \fq \subseteq \tilde \fr \subseteq
\tilde \fp \} \\ \fr & \longmapsto \pi _ { B, \fq } ^ { -1} (\fr )\\ \tilde \fr / \fq
& \longmapsfrom \tilde \fr
2022-02-16 02:31:15 +01:00
\end { align}
2022-02-16 05:19:03 +01:00
By
\ref { bijiredprim} , the $ \tilde \fr $
are in canonical bijection with the irreducible subsets $ Z $ of $ Y $ containing
$ X $ .
Thus, the chains $ \fp = \fp _ 0 \supsetneq \ldots \supsetneq \fp _ k $ are in
canonical bijection with the chains $ X = X _ 0 \subsetneq X _ 1 \subsetneq \ldots
\subsetneq X_ k \subseteq Y$ of irreducible subsets and
$ \hght ( \fp ) =
\codim (X,Y)$ .
2022-02-16 02:31:15 +01:00
\end { example}
\begin { remark}
2022-02-16 05:19:03 +01:00
Let $ A $ be an arbitrary ring.
One can show that there is a bijection between $ \Spec A $ and the set of
irreducible subsets $ Y \subseteq \Spec A $ :
\begin { align}
f: \Spec A
& \longrightarrow \{ Y \subseteq \Spec A | Y\text { irreducible} \} \\ \fp
& \longmapsto \Vs (\fp ) \\ \bigcup _ { \fp \in Y} \fp & \longmapsfrom Y
2022-02-16 02:31:15 +01:00
\end { align}
2022-02-16 05:19:03 +01:00
Thus, the chains $ \fp = \fp _ 0 \supsetneq \ldots \supsetneq \fp _ k $ are in
canonical bijection with the chains $ V ( \fp ) = X _ 0 \subsetneq X _ 1 \subsetneq
\ldots \subsetneq X_ k \subseteq \Spec A$ of irreducible subsets, and
$ \hght ( \fp ) = \codim ( V ( \fp ) , \Spec A ) $ .
2022-02-16 02:31:15 +01:00
\end { remark}
\subsubsection { The relation between \texorpdfstring { $ \hght ( \fp ) $ } { ht(p)} and \texorpdfstring { $ \trdeg $ } { trdeg} }
We will use the following
2022-02-16 05:19:03 +01:00
\begin { lemma}
\label { extendtotrbase} Let
$ \mathfrak { l } $ be an arbitrary field, $ A $ a
$ \mathfrak { l } $ -algebra of finite
type which is a domain, $ K \coloneqq Q ( A ) $ the field of quotients and let
$ ( a _ i ) _ { i = 1 } ^ n $ be
$ \mathfrak { l } $ -algebraically independent elements of $ A $ .
Then there exist a natural number $ m \ge n $ and a transcendence base
$ ( a _ i ) _ { i
= 1} ^ m$ for $ K /
\mathfrak { l} $ with $ a_ i \in A$ for $ 1 \le i \le m$ .
2022-02-16 02:31:15 +01:00
\end { lemma}
\begin { proof}
2022-02-16 05:19:03 +01:00
The proof is similar to the proof of
\ref { ltrdegresfieldtrbase} .
There are a natural number $ m \ge n $ and elements
$ ( a _ i ) _ { i = n + 1 } ^ m \in
A^ { m-n} $ which generate $ K$ in the sense of a matroid
used in the definition of
$ \trdeg $ .
For instance, one can use generators of the $ \mathfrak { l } $ -algebra
$ A $ .
We assume $ m $ to be minimal and claim that
$ ( a _ i ) _ { i = 1 } ^ m $ are
$ \mathfrak { l } $ -algebraically independent.
Otherwise there is $ j \in \N $ , $ 1 \le j \le m $ such that $ a _ j $ is algebraic
over the subfield of $ K $ generated by $ \mathfrak { l } $ and the
$ ( a _ i ) _ { i = 1 } ^ { j - 1 } $ .
We have $ j > n $ by the algebraic independence of
$ ( a _ i ) _ { i = 1 } ^ n $ .
Exchanging $ x _ j $ and $ x _ m $ , we may assume $ j = m $ .
But then $ K $ is algebraic over its subfield generated by
$ \mathfrak { l } $ and the
$ ( a _ i ) _ { i = 1 } ^ { m - 1 } $ , contradicting the minimality
of $ m $ .
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { theorem}
\label { htandtrdeg}
Let $ \mathfrak { l } $ be an arbitrary field, $ A $ a
$ \mathfrak { l } $ -algebra of
finite type which is a domain, and $ \fp \in \Spec A $ .
Let $ K \coloneqq Q ( A ) $ be the field of quotients of $ A $ .
Then
2022-02-16 02:31:15 +01:00
\[
2022-02-16 05:19:03 +01:00
\hght (\fp ) = \trdeg (K /\mathfrak { l} ) - \trdeg (\mathfrak { k} (\fp ) /
\mathfrak { l} )
\]
2022-02-16 02:31:15 +01:00
\end { theorem}
\begin { remark}
2022-02-16 05:19:03 +01:00
By example
\ref { htandcodim} ,
theorem
\ref { trdegandkdim} is a special case of this theorem.
%(\ref{htandtrdeg}).
2022-02-16 02:31:15 +01:00
\end { remark}
\begin { proof}
2022-02-16 05:19:03 +01:00
If $ \fp = \fp _ 0 \supsetneq \fp _ 1 \supsetneq \ldots \supsetneq \fp _ k $ is a chain
of prime ideals in $ A $ , we have $ \trdeg ( \mathfrak { k } ( \fp _ i ) / \mathfrak { l } ) <
\trdeg (\mathfrak { k} (\fp _ { i+1} ) / \mathfrak { l} )$ by
\ref { trdegresfield} (``A
first result of dimension theory'').
Thus
\[
k \le \trdeg (\mathfrak { k} (\fp _ k) / \mathfrak { l} ) -
\trdeg (\mathfrak { k} (\fp ) / \mathfrak { l} ) \le \trdeg (K / \mathfrak { l} ) -
\trdeg (\mathfrak { k} (\fp ) / \mathfrak { l} )
\]
where the last inequality is
another application of \ref { trdegresfield} (using $ K = Q ( A ) = Q ( A / \{ 0 \} ) =
\mathfrak { k} (\{ 0\} )$ and the fact that $ \{ 0\} \subseteq \fp _ k$ is a prime
ideal).
Hence
\[
\hght (\fp ) \le \trdeg ( K / \mathfrak { l} ) -
\trdeg (\mathfrak { k} (\fp ) /
\mathfrak { l} )
\]
and it remains to show the opposite inequality.
\begin { claim}
For any maximal ideal $ \fp \in \MaxSpec A $
\[
\hght (\mathfrak { m} ) \ge \trdeg (K
/ \mathfrak { l} )
\]
\end { claim}
\begin { subproof}
By the Noether normalization
theorem (
\ref { noenort} ), there are
$ ( x _ i ) _ { i = 1 } ^ d \in A ^ d $ which are
algebraically independent over $ \mathfrak { l } $ such that $ A $ is
finite over the
subalgebra $ S $ generated by the $ x _ i $ .
We have $ d = \trdeg ( K / \mathfrak { l } ) $ as the $ x _ i $ form a transcendence base
of $ K / \mathfrak { l } $ .
\begin { claim}
We can choose $ x _ i \in \mathfrak { m } $
\end { claim}
\begin { subproof}
By the
Nullstellensatz (
\ref { hns2} ), $ \mathfrak { k } ( \mathfrak { m } ) = A /
\mathfrak { m} $
is a finite field extension of $ \mathfrak { l } $ .
Hence there exists a normed polynomial $ P _ i \in \mathfrak { l } [ T ] $ with
$ P _ i ( x _ i \mod \mathfrak { m } ) = 0 $ in $ \mathfrak { k } ( \mathfrak { m } ) $ .
Let $ \tilde x _ i \coloneqq P _ i ( x _ i ) \in \mathfrak { m } $ and $ \tilde
S$ the
subalgebra generated by the $ \tilde x _ i $ .
As $ P _ i ( x _ i ) - \tilde x _ i = 0 $ , $ x _ i $ is integral over $ \tilde S $ and so is $ S
/ \tilde S$ .
It follows that $ A / \tilde S $ is integral, hence finite by
\ref { ftaiimplf} .
Replacing $ x _ i $ by $ \tilde x _ i $ , we may thus assume that $ x _ i \in
\mathfrak { m} $ .
\end { subproof}
% TODO: fix names A_1 = A_S, k_1 = R_S
The ring homomorphism $ \ev _ x : R = \mathfrak { l } [ X _ 1 , \ldots ,X _ d ]
\xrightarrow { P
\mapsto P(x_ 1,\ldots ,x_ d)} A$ is injective.
Because $ R $ is a UFD, $ R $ is normal (
\ref { ufdnormal} ).
Thus the going-down theorem (
\ref { gdkrull} ) applies to the integral
$ R $ -algebra
$ A $ .
For $ 0 \le i \le d $ , let $ \fp _ i \subseteq R $ be the ideal generated by
$ ( X _ j ) _ { j = i + 1 } ^ d $ .
We have $ \mathfrak { m } \sqcap R = \fp _ 0 $ as all $ X _ i \in
\mathfrak { m} $ , hence
$ X _ i \in \mathfrak { m } \sqcap R $ and $ \fp _ 0 $ is a maximal ideal.
By applying going-down and induction on $ i $ , there is a chain
$ \mathfrak { m } =
\fq _ 0 \supsetneq \fp _ 1 \supsetneq \ldots \supsetneq \fp _ d$ of elements of
$ \Spec A $ such that $ \fq _ i \sqcap R = \fp _ i $ .
It follows that $ \hght ( \mathfrak { m } ) \ge d $ .
\end { subproof}
This finishes the proof in the case of $ \fp \in \MaxSpec A $ .
To reduce the general case to that special case, we proceed as in
\ref { trdegresfield} : By lemma
\ref { ltrdegresfieldtrbase} there are
$ a _ 1 , \ldots ,a _ n \in A $ whose images in $ A / \fp $ form a transcendence base for
$ \mathfrak { k } ( \fp ) / \mathfrak { l } $ .
As these images are $ \mathfrak { l } $ -algebraically independent, the
same holds
for the $ a _ i $ themselves.
By lemma
\ref { extendtotrbase} we can extend
$ ( a _ { i } ) _ { i = 1 } ^ n $ to
a
transcendence base $ ( a _ i ) _ { i = 1 } ^ m \in A ^ m $
of $ K / \mathfrak { l } $ .
Let $ R \subseteq A $ denote the $ \mathfrak { l } $ -subalgebra generated
by
$ a _ 1 , \ldots ,a _ n $ and let $ S \coloneqq R \setminus \{ 0 \} $ .
Let $ A _ 1 \coloneqq A _ S $ and $ \fp _ S $ the prime ideal corresponding to $ \fp $
under $ \Spec ( A _ 1 ) \cong \{ \fr \in \Spec A | \fr \cap S =
\emptyset \} $
(
\ref { idealslocbij} ).
As in
\ref { locandquot} , $ A _ 1 $ is a domain with $ Q ( A _ 1 ) \cong K = Q ( A ) $
and by
\ref { locandfactor} $ A _ 1 / \fp _ S
\cong (A / \fp )_ { \overline { S} } $ , where
$ \overline { S } $ denotes the image of $ S $ in $ A / \fp $ .
As in
\ref { trdegresfield} , $ \mathfrak { k } ( \fp _ S ) \cong
\mathfrak { k} (\fp )$ is
integral over $ A _ 1 / \fp _ S $ .
From the fact about integrality and fields (
\ref { fintaf} ), it
follows that $ A _ 1
/ \fp _ S$ is a field.
Hence $ \fp _ S \in \MaxSpec ( A _ 1 ) $ and the special case can be applied
to $ \fp _ S $
and $ A _ 1 / \mathfrak { l } _ 1 $ , showing that $ \hght ( \fp _ S )
\ge e = \trdeg (K /
\mathfrak { l} _ 1)$ .
We have $ \trdeg ( K / \mathfrak { l } _ 1 ) = m - n $ , as
$ ( a _ i ) _ { i = n + 1 } ^ m $ is a
transcendence base for $ K / \mathfrak { l } _ 1 $ .
By the description of $ \Spec A _ S $ (
\ref { idealslocbij} ), a chain $ \fp _ S =
\fq _ 0
\supsetneq \ldots \supsetneq \fp _ e$ of prime ideals in $ A_ S$ defines a similar
chain $ \fp _ i \coloneqq \fq _ i \sqcap A $ in $ A $ with $ \fp _ 0 = \fp $ .
Thus $ \hght ( \fp ) \ge e $ .
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { remark}
2022-02-16 05:19:03 +01:00
As a consequence of his principal ideal theorem, Krull has shown the finiteness
of $ \hght ( \fp ) $ for $ \fp \in \Spec A $ when $ A $ is a Noetherian
ring.
But $ \dim A = \sup _ { \fp \in \Spec A } \hght ( \fp ) =
\sup _ { \mathfrak { m} \in
\MaxSpec A} \hght (\mathfrak { m} )$ , the Krull dimension of the
Noetherian
topological space $ \Spec A $ may nevertheless be infinite.
2022-02-16 02:31:15 +01:00
\end { remark}
2022-02-16 05:19:03 +01:00
\begin { example}
+[Noetherian ring with infinite dimension]\footnote { \url { https://math.stackexchange.com/questions/1109732/noetherian-ring-with-infinite-krull-dimension-nagatas-example} }
Let $ A = \mathfrak { k } [ X _ i | i \in \N ] $ and $ m _ 1 , m _ 2 , \ldots \in \N $ an
increasing sequence such that $ m _ { i + 1 } - m _ i > m _ i -
m_ { i-1} $ .
Let $ \fp _ i \coloneqq ( X _ { m _ { i } + 1 } , \ldots ,X _ { m _ { i + 1 } } ) $ and $ S \coloneqq A
\setminus \bigcup _ { i \in \N } \fp _ i$ .
2022-02-16 02:31:15 +01:00
$ S $ is multiplicatively closed.
2022-02-16 05:19:03 +01:00
$ A _ S $ is Noetherian but $ \hght ( ( \fp _ i ) _ S ) = m _ { i + 1 } -
m_ { i} $ hence $ \dim (A_ S) = \infty $ .
2022-02-16 02:31:15 +01:00
\end { example}
% Lecture 10
\subsection { Dimension of products}
2022-02-16 05:19:03 +01:00
\begin { proposition}
\label { dimprod}
Let $ X \subseteq \mathfrak { k } ^ n $ and $ Y \subseteq
\mathfrak { k} ^ n$ be
irreducible and closed.
Then $ X \times Y $ is also an irreducible closed subset of
$ \mathfrak { k } ^ { m + n } $ .
Moreover, $ \dim ( X \times Y ) = \dim ( X ) +
\dim (Y)$ and $ \codim (X \times Y,
\mathfrak { k} ^ { m+n} ) = \codim (X, \mathfrak { k} ^ m)
+ \codim (Y, \mathfrak { k} ^ n)$ .
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
Let $ X = V ( \fp ) $ and $ Y = V ( \fq ) $ where $ \fp \in \Spec
\mathfrak { k} [X_ 1,\ldots ,X_ m]$ and $ \fq \in \Spec \mathfrak { k} [X_ 1,\ldots ,X_ n]$ .
We denote points of $ \mathfrak { k } ^ { m + n } $ as $ x = ( x',x'' ) $ with $ x' \in
\mathfrak { k} ^ m, x''\in \mathfrak { k} ^ n$ .
Then $ X \times Y $ is the set of zeroes of the ideal in
$ \mathfrak { k } [ X _ 1 , \ldots ,X _ { m + n } ] $ generated by the polynomials $ f ( x ) =
\phi (x')$ , with $ \phi $ running over $ \fp $ and $ g(x) =
\gamma (x'')$ with
$ \gamma $ running over $ \fq $ .
2022-02-16 02:31:15 +01:00
Thus $ X \times Y $ is closed in $ \mathfrak { k } ^ { m + n } $ .
2022-02-16 05:19:03 +01:00
We must also show irreducibility.
$ X \times Y \neq \emptyset $ is obvious.
Assume that $ X \times Y = A _ 1 \cup A _ 2 $ , where the $ A _ i \subseteq
\mathfrak { k} ^ { m+n} $ are closed.
For $ x' \in \mathfrak { k } ^ m, x' \times Y $ is homeomorphic to the
irreducible
$ Y $ .
Thus $ X = X _ 1 \cup X _ 2 $ where $ X _ i = \{ x \in X | \{ x \} \times Y \subseteq
A_ i\} $ .
Because $ X _ i = \bigcap _ { y \in Y } \{ x \in X | ( x,y ) \in A _ i \} $ , this is
closed.
As $ X $ is irreducible, there is $ i \in \{ 1 ; 2 \} $ which $ X _ i = X $ .
Then $ X \times Y = A _ i $ confirming the irreducibility of $ X \times Y $ .
Let $ a = \dim X $ and $ b = \dim Y $ and $ X _ 0 \subsetneq X _ 1 \subsetneq \ldots
\subsetneq X_ a = X$ , $ Y_ 0 \subsetneq Y_ 1 \subsetneq \ldots \subsetneq Y_ b = Y$
be chains of irreducible subsets.
By the previous result, $ X _ 0 \times Y _ 0 \subsetneq X _ 1 \times Y _ 0 \subsetneq
\ldots \subsetneq X_ a \times Y_ 0 \subsetneq X_ a \times Y_ 1 \subsetneq \ldots
\subsetneq X_ a \times Y_ a = X \times Y$ is a chain of irreducible subsets.
2022-02-16 02:31:15 +01:00
Thus $ \dim ( X \times Y ) \ge a + b = \dim X + \dim Y $ .
2022-02-16 05:19:03 +01:00
Similarly one derives $ \codim ( X \times Y, \mathfrak { k } ^ { m + n } ) \ge \codim ( X,
\mathfrak { k} ^ m) +
\codim (Y, \mathfrak { k} ^ n)$ .
By
\ref { trdegandkdim} we have $ \dim ( A ) +
\codim (A, \mathfrak { k} ^ l) = l$ for
irreducible subsets of $ \mathfrak { k } ^ l $ .
Thus equality must hold in the previous two inequalities.
2022-02-16 02:31:15 +01:00
\end { proof}
\subsection { The nil radical}
\begin { notation}
Let $ \Vspec ( I ) $ denote the set of $ \fp \in \Spec A $ containing $ I $ .
\end { notation}
\begin { proposition} [Nil radical]
2022-02-16 05:19:03 +01:00
For a ring $ A $ , $ \bigcap _ { \fp \in \Spec A } \fp =
\sqrt { \{ 0\} } = \{ a \in A | \exists k \in \N ~ a^ k = 0\}
\text { \reflectbox { $ \coloneqq $ } } \nil (A)$ , the set of nilpotent elements
of $ A $ .
This is called the \vocab { nil radical} of $ A $ .
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
It is clear that elements of $ \sqrt { \{ 0 \} } $ must belong to all
prime ideals.
Conversely, let $ a \in A \setminus \sqrt { \{ 0 \} } $ .
Then $ S = a ^ { \N } $ is a multiplicative subset of $ A $
not containing $ 0 $ .
The localisation $ A _ S $ of $ A $ is thus not the null ring.
Hence $ \Spec A _ S \neq \emptyset $ .
If $ \fq \in \Spec A _ S $ , then by the description of $ \Spec A _ S $
(
\ref { idealslocbij} ), $ \fp \coloneqq \fq \sqcap A $ is a prime ideal of $ A $
disjoint from $ S $ , hence $ a \not \in \fp $ .
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { corollary}
\label { sqandvspec}
For an ideal $ I $ of $ R $ , $ \sqrt { I } = \bigcap _ { \fp \in \Vspec ( I ) }
\fp $ .
2022-02-16 02:31:15 +01:00
\end { corollary}
\begin { proof}
2022-02-16 05:19:03 +01:00
This is obtained by applying the proposition to $ A = R / I $ and using the
bijection $ \Spec ( R / I ) \cong V ( I ) $ sending $ \fp \in V ( I ) $ to $ \fp \coloneqq
\fp / I$ and $ \fq \in \Spec (R / I)$ to its inverse image $ \fp $ in $ R$ .
2022-02-16 02:31:15 +01:00
\end { proof}
\subsubsection { Closed subsets of \texorpdfstring { $ \Spec R $ } { Spec R} }
2022-02-16 05:19:03 +01:00
\begin { proposition}
\label { bijspecideal}
2022-02-16 02:31:15 +01:00
There is a bijection
\begin { align}
2022-02-16 05:19:03 +01:00
f: \{ A \subseteq \Spec R | A\text { closed} \}
& \longrightarrow \{ I \subseteq R | I \text { ideal and } I = \sqrt { I} \} \\ A
& \longmapsto \bigcap _ { \fp \in A} \fp \\ \Vspec (I) & \longmapsfrom I
2022-02-16 02:31:15 +01:00
\end { align}
2022-02-16 05:19:03 +01:00
Under this bijection, the irreducible subsets correspond to the prime ideals
and the closed points $ \{ \mathfrak { m } \} , \mathfrak { m }
\in \Spec A$ to the
maximal ideals.
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
If $ A = \Vspec ( I ) $ , then by
\ref { sqandvspec}
$ \sqrt { I } = \bigcap _ { \fp \in A }
\fp $ .
Thus, an ideal with $ \sqrt { I } = I $ can be recovered from
$ \Vspec ( I ) $ .
Since $ \Vspec ( J ) = \Vspec ( \sqrt { J } ) $ , the map from ideals
with $ \sqrt { I } = I $
to closed subsets is surjective.
Sine $ R $ corresponds to $ \emptyset $ , the proper ideals correspond to non-empty
subsets of $ \Spec R $ .
Assume that $ \Vspec ( I ) = \Vspec ( J _ 1 ) \cup
\Vspec (J_ 2)$ , where the decomposition
is proper and the ideals coincide with their radicals.
Let $ g = f _ 1 f _ 2 $ with $ f _ k \in J _ k \setminus I $ .
Since $ \Vspec ( g ) \supseteq \Vspec ( f _ k ) \supseteq
\Vspec (I_ k), \Vspec (I)
\subseteq \Vspec (g)$ .
Hence $ g \in \sqrt { I } = I $ .
2022-02-16 02:31:15 +01:00
As $ f _ k \not \in I $ , $ I $ fails to be a prime ideal.
2022-02-16 05:19:03 +01:00
Conversely, assume that $ f _ 1 f _ 2 \in I $ while the factors are not in $ I $ .
Since $ I = \sqrt { I } , \Vspec ( f _ k ) \not \supseteq
\Vspec (I)$ .
But $ \Vspec ( f _ 1 ) \cup \Vspec ( f _ 2 ) =
\Vspec (f_ 1f_ 2) \supseteq \Vspec (I)$ .
The proper decomposition $ \Vspec ( I ) = \left ( \Vspec ( I ) \cap \Vspec ( f _ 1 ) \right )
\cup \left ( \Vspec (I) \cap \Vspec (f_ 2) \right ) $ now shows that $ \Vspec (I)$
fails to be irreducible.
2022-02-16 02:31:15 +01:00
The final assertion is trivial.
\end { proof}
\begin { corollary}
If $ R $ is a Noetherian ring, then $ \Spec R $ is a Noetherian topological space.
\end { corollary}
\begin { remark}
2022-02-16 05:19:03 +01:00
It is not particularly hard to come up with examples which show that the
converse implication does not hold.
2022-02-16 02:31:15 +01:00
\end { remark}
2022-02-16 05:19:03 +01:00
\begin { example}
+
Let $ A = \mathfrak { k } [ X _ n | n \in \N ] / I $ where $ I $ denotes the ideal generated by
$ \{ X _ i ^ 2 | i \in \N \} $ .
$ A $ is not Noetherian, since the ideal $ J $ generated by $ \{ X _ i | i \in \N \} $
is not finitely generated.
$ A / J \cong \mathfrak { k } $ , hence $ J $ is maximal.
As every prime ideal must contain $ \nil ( A ) \supseteq J $ , $ J $ is
the only prime
ideal.
2022-02-16 02:31:15 +01:00
Thus $ \Spec A $ contains only one element and is hence Noetherian.
\end { example}
2022-02-16 05:19:03 +01:00
\begin { corollary} [About the smallest prime ideals containing $ I $ ]
\label { smallestprimesvi}
If $ R $ is Noetherian and $ I \subseteq R $ an ideal, then the set
$ \Vspec ( I ) =
\{ \fp \in \Spec R | I \subseteq \fp \} $ has finitely many $ \subseteq $ - minimal
elements $ ( \fp _ i ) _ { i = 1 } ^ k $ and every element
of $ V ( I ) $ contains at least one
$ \fp _ i $ .
The $ \Vspec ( \fp _ i ) $ are precisely the irreducible components of
$ V ( I ) $ .
Moreover $ \bigcap _ { i = 1 } ^ k \fp _ i = \sqrt { I } $ and $ k >
0$ if $ I$ is a proper
ideal.
2022-02-16 02:31:15 +01:00
\end { corollary}
\begin { proof}
2022-02-16 05:19:03 +01:00
If $ \Vspec ( I ) = \bigcup _ { i = 1 } ^ k
\Vspec (\fp _ i)$ is the decomposition into
irreducible components then every $ \fq \in \Vspec ( I ) $ must belong
to at least
one $ \Vspec ( \fp _ i ) $ , hence $ \fp _ i \subseteq \fq $ .
Also $ \fp _ i \in \Vspec ( \fp _ i ) \subseteq \Vspec ( I ) $ .
It follows that the sets of $ \subseteq $ -minimal elements of
$ \Vspec ( I ) $ and of
$ \{ \fp _ 1 , \ldots , \fp _ k \} $ coincide.
As there are no non-trivial inclusions between the $ \Vspec ( \fp _ i ) $ ,
there are
no non-trivial inclusions between the $ \fp _ i $ and the assertion follows.
2022-02-16 02:31:15 +01:00
The final remark is trivial.
\end { proof}
\begin { corollary}
If $ R $ is any ring, $ \hght ( \fp ) = \codim ( \Vspec ( \fp ) , \Spec R ) $ .
\end { corollary}
\subsection { The principal ideal theorem}
Krull was able to show:
2022-02-16 05:19:03 +01:00
\begin { theorem} [Principal ideal theorem /
Hauptidealsatz]
\label { pitheorem} Let $ A $ be a Noetherian ring,
$ a \in A $ and
$ \fp \in \Spec A $ a $ \subseteq $ -minimal element of $ \Vspec ( a ) $ .
Then $ \hght ( \fp ) \le 1 $ .
2022-02-16 02:31:15 +01:00
\end { theorem}
\begin { proof}
Probably not relevant for the exam.
\end { proof}
\begin { remark}
2022-02-16 05:19:03 +01:00
Intuitively, the theorem says that by imposing a single equation one ends up in
codimension at most $ 1 $ .
This would not be true in real analysis (or real algebraic geometry) as the
equation $ \sum _ { i = 1 } ^ { n } X _ i ^ 2 = 0 $ shows.
By
\ref { smallestprimesvi} , if $ a $ is a non-unit then a $ \fp \in \Spec A $ to
which the theorem applies can always be found.
2022-02-16 02:31:15 +01:00
Using induction on $ k $ , Krull was able to derive:
\end { remark}
2022-02-16 05:19:03 +01:00
\begin { theorem} [Generalized principal ideal theorem] Let $ A $ be a Noetherian
ring, $ ( a _ i ) _ { i = 1 } ^ k \in A $ and $ \fp \in
\Spec A$ a $ \subseteq $ - minimal element
of $ \bigcap _ { i = 1 } ^ k V ( a _ i ) $ , the set of prime ideals containing all
$ a _ i $ .
2022-02-16 02:31:15 +01:00
Then $ \hght ( \fp ) \le k $ .
\end { theorem}
2022-02-16 05:19:03 +01:00
Modern approaches to the principal ideal theorem usually give a direct proof of
this more general theorem.
2022-02-16 02:31:15 +01:00
\begin { corollary}
If $ R $ is a Noetherian ring and $ \fp \in \Spec R $ , then $ \hght ( \fp ) < \infty $ .
\end { corollary}
\begin { proof}
2022-02-16 05:19:03 +01:00
If $ \fp $ is generated by $ ( f _ i ) _ { i = 1 } ^ k $ ,
then $ \hght ( \fp ) \le k $ .
2022-02-16 02:31:15 +01:00
\end { proof}
\subsubsection { Application to the dimension of intersections}
2022-02-16 05:19:03 +01:00
\begin { remark}
\label { smallestprimeandirredcomp}
Let $ R = \mathfrak { k } [ X _ 1 , \ldots ,X _ n ] $ and $ I \subseteq R $ an ideal.
2022-02-16 02:31:15 +01:00
2022-02-16 05:19:03 +01:00
If $ ( \fp _ i ) _ { i = 1 } ^ k $ are the smallest prime
ideals of $ R $ containing $ I $ , then
$ ( \Va ( \fp _ i ) ) _ { i = 1 } ^ k $ are the
irreducible components of $ \Va ( I ) $ .
2022-02-16 02:31:15 +01:00
\end { remark}
\begin { proof}
2022-02-16 05:19:03 +01:00
The $ \Va ( \fp _ i ) $ are irreducible, there are no non-trivial
inclusions between
them and $ \Va ( I ) = \Va ( \sqrt { I } ) =
\Va (\bigcap _ { i=1} ^ k \fp _ i) =
\bigcup _ { i=1} ^ k \Va (\fp _ i)$ .
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { corollary} [of the principal ideal theorem]
\label { corpithm}
2022-02-16 05:19:03 +01:00
Let $ X \subseteq \mathfrak { k } ^ n $ be irreducible,
$ ( f _ i ) _ { i = 1 } ^ k $ elements of $ R
= \mathfrak { k} [X_ 1,\ldots ,X_ n]$ and $ Y$ an irreducible component of $ A = X \cap
\bigcap _ { i=1} ^ k V(f_ i)$ .
2022-02-16 02:31:15 +01:00
Then $ \codim ( Y,X ) \le k $ .
\end { corollary}
\begin { remark}
2022-02-16 05:19:03 +01:00
This confirms the naive geometric intuition that by imposing $ k $ equations one
ends up in codimension at most $ k $ .
2022-02-16 02:31:15 +01:00
\end { remark}
\begin { proof}
2022-02-16 05:19:03 +01:00
If $ X = v ( \fp ) , X \cap \bigcap _ { i = 1 } ^ k V ( f _ i ) = V ( I ) $ where $ I
\subseteq R$ is
the ideal generated by $ \fp $ and the $ f _ i $ .
By
\ref { smallestprimeandirredcomp} , $ Y = V ( \fq ) $ where $ \fq $ is the smallest
prime ideal containing $ I $ .
Then $ \fq / \fp $ is a smallest prime ideal of $ R / \fp $ containing all $ ( f _ i
\mod \fp )_ { i=1} ^ k$ .
By the principal ideal theorem (
\ref { pitheorem} ),
$ \hght ( \fq / \fp ) \le k $ and
the assertion follows from example
\ref { htandcodim} .
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 05:19:03 +01:00
\begin { remark}
\label { affineproblem}
Note that the intersection $ X \cap \bigcap _ { i = 1 } ^ k V ( f _ i ) $ can easily
be empty,
even when $ k $ is much smaller than $ \dim X $ .
2022-02-16 02:31:15 +01:00
\end { remark}
2022-02-16 05:19:03 +01:00
\begin { corollary}
\label { codimintersection}
Let $ A $ and $ B $ be irreducible subsets of $ \mathfrak { k } ^ n $ .
If $ C $ is an irreducible component of $ A \cap B $ , then $ \codim ( C,
\mathfrak { k} ^ n)
\le \codim (A, \mathfrak { k} ^ n) + \codim (B, \mathfrak { k} ^ n)$ .
2022-02-16 02:31:15 +01:00
\end { corollary}
2022-02-16 05:19:03 +01:00
\begin { remark}
+
Equivalently, $ \dim ( C ) \ge \dim ( A ) + \dim ( B ) - n $ .
2022-02-16 02:31:15 +01:00
\end { remark}
\begin { proof}
2022-02-16 05:19:03 +01:00
Let $ X = A \times B \subseteq \mathfrak { k } ^ { 2 n } $ , where we use
$ ( X _ 1 , \ldots ,X _ n,Y _ 1 , \ldots ,Y _ n ) $ as coordinates of $ \mathfrak { k } ^ { 2 n } $ .
Let $ \Delta \coloneqq \{ ( x _ 1 , \ldots ,x _ n,x _ 1 , \ldots ,x _ n ) | x \in
\mathfrak { k} ^ n\} $ be the diagonal in $ \mathfrak { k} ^ n
\times \mathfrak { k} ^ n$ .
The projection $ \mathfrak { k } ^ { 2 n } \to \mathfrak { k } ^ n $ to the
$ X $ -coordinates
defines a homeomorphism between $ ( A \times B ) \cap \Delta $ and $ A \cap B $ .
Thus, $ C $ is homeomorphic to an irreducible component $ C' $ of $ ( A \times B )
\cap \Delta $ and
2022-02-16 02:31:15 +01:00
\begin { align}
2022-02-16 05:19:03 +01:00
\codim (C, \mathfrak { k} ^ n) = n - \dim (C) = n -
\dim (C') = n - \dim (A \times B) + \codim (C', A \times B) \\
\overset { \text {
\ref { corpithm} } } { \le } 2n - \dim (A \times B)
\overset { \text {
\ref { dimprod} } } { =} 2n - \dim (A) - \dim (B) =
\codim (A,\mathfrak { k} ^ n) + \codim (B, \mathfrak { k} ^ n)
2022-02-16 02:31:15 +01:00
\end { align}
2022-02-16 05:19:03 +01:00
by the general
properties of dimension and codimension,
\ref { corpithm} applied to
$ ( X _ i -
Y_ i)_ { i=1} ^ n$ , the result about the dimension
of products (
\ref { dimprod} ) and
again the general properties of dimension and codimension.
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { remark}
2022-02-16 05:19:03 +01:00
As in
\ref { affineproblem} , $ A \cap B $ can easily be empty, even when $ A $
and
$ B $ have codimension $ 1 $ and $ n $ is very large.
2022-02-16 02:31:15 +01:00
\end { remark}
\subsubsection { Application to the property of being a UFD}
2022-02-16 02:52:05 +01:00
\begin { proposition}
2022-02-16 05:19:03 +01:00
Let $ R $ be a Noetherian domain.
Then $ R $ is a UFD iff every $ \fp \in \Spec R $ with $ \hght ( \fp ) =
1$ \footnote { In
other words, every $ \subseteq $ -minimal element of the set of non-zero prime
ideals of $ R $ } is a principal ideal.
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
Every element of every Noetherian domain can be written as a product of
irreducible elements.
\footnote { Consider the set of principal ideals $ rR $ where $ r $ is not a product of
irreducible elements.}
2022-02-16 02:31:15 +01:00
Thus, $ R $ is a UFD iff every irreducible element of $ R $ is prime.
2022-02-16 05:19:03 +01:00
Assume that this is the case.
Let $ \fp \in \Spec R, \hght ( \fp ) = 1 $ .
Let $ p \in \fp \setminus \{ 0 \} $ .
Replacing $ p $ by a prime factor of $ p $ , we may assume $ p $ to be prime.
Thus $ \{ 0 \} \subsetneq pR \subseteq \fp $ is a chain of prime ideals and since
$ \hght ( \fp ) = 1 $ it follows that $ \fp = pR $ .
Conversely, assume that every $ \fp \in \Spec R $ with
$ \hght ( \fp ) = 1 $ is a
principal ideal.
Let $ f \in R $ be irreducible.
Let $ \fp \in \Spec R $ be a $ \subseteq $ -minimal element of $ V ( f ) $ .
By the principal ideal theorem (
\ref { pitheorem} ),
$ \hght ( \fp ) = 1 $ .
Thus $ \fp = pR $ for some prime element $ p $ .
We have $ p | f $ since $ f \in \fp $ .
As $ f $ is irreducible, $ p $ and $ f $ are multiplicatively equivalent.
Thus $ f $ is a prime element.
2022-02-16 02:31:15 +01:00
\end { proof}
2022-02-16 02:52:05 +01:00
\subsection { The Jacobson radical}
2022-02-16 02:31:15 +01:00
\begin { proposition}
2022-02-16 05:19:03 +01:00
For a ring $ A, \bigcap _ { \mathfrak { m } \in \MaxSpec A } \mathfrak { m } = \{ a \in A |
\forall x \in A ~ 1 - ax \in A^ { \times } \}
\text { \reflectbox { $ \coloneqq $ } }
\rad (A)$ , the \vocab { Jacobson radical } of $ A$ .
2022-02-16 02:31:15 +01:00
\end { proposition}
\begin { proof}
2022-02-16 05:19:03 +01:00
Suppose $ \mathfrak { m } \in \MaxSpec A $ and $ a \in A \setminus
\mathfrak { m} $ .
Then $ a \mod \mathfrak { m } \neq 0 $ and $ A / \mathfrak { m } $
is a field.
Hence $ a \mod \mathfrak { m } $ has an inverse $ x \mod
\mathfrak { m} $ .
$ 1 - ax \in \mathfrak { m } $ , hence $ 1 - ax \not \in
A^ { \times } $ and $ a $ is not al element of the RHS.
Conversely, let $ a \in A $ belong to all $ \mathfrak { m } \in \MaxSpec
A$ .
If there exists $ x \in A $ such that $ 1 - ax \not \in
A^ { \times } $ then $ (1-ax)
A$ was a proper ideal in $ A$ , hence contained in a maximal ideal
$ \mathfrak { m } $ .
As $ a \in \mathfrak { m } , 1 = ( 1 - ax ) + ax \in
\mathfrak { m} $ , a contradiction.
Hence every element of $ \bigcap _ { \mathfrak { m } \in \MaxSpec A } \mathfrak { m } $
belongs to the right hand side.
2022-02-16 02:31:15 +01:00
\end { proof}
\begin { example}
2022-02-16 05:19:03 +01:00
If $ A $ is a local ring, then $ \rad ( A ) =
\mathfrak { m} _ A$ .
2022-02-16 02:31:15 +01:00
\end { example}
\begin { example}
2022-02-16 05:19:03 +01:00
If $ A $ is a PID with infinitely many multiplicative equivalence classes of
prime elements (e.g. $ \Z $ of $ \mathfrak { k } [ X ] $ ), then
$ \rad ( A ) = \{ 0 \} $ : Prime
ideals of a PID are maximal.
Thus if $ x \in \rad ( A ) $ , every prime element divides $ x $ .
If $ x \neq 0 $ , it follows that $ x $ has infinitely many prime divisors.
2022-02-16 02:31:15 +01:00
However every PID is a UFD.
\end { example}
\begin { example}
2022-02-16 05:19:03 +01:00
If $ A $ is a PID for which $ p _ 1 , \ldots ,p _ n $ is a list of representatives of the
multiplicative equivalence classes of prime elements, then
$ \rad ( A ) = f A $
where $ f = \prod _ { i = 1 } ^ { n } p _ i $ .
2022-02-16 02:31:15 +01:00
\end { example}
% proof of the pitheorem probably won't be relevant in the exam
% last 2 slides are of "limited relevance" (3 option questions), and may improve grade, but 1.0 can be obtained without it