% TODO REMARK ABOUT FIN PRESENTED MODULES (LECTURE 2)
% TODO: LECTURE 9 LEMMA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ÜBERSICHT %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% List of forms of HNS
\begin{itemize}
\item[HNS2 $\implies$ HNS1b] Let $I \subseteq\mathfrak{l}[X_1,\ldots,X_n]$. $I \subseteq\mathfrak{m}$ maximal. $R /\mathfrak{m}$ is isomorphic to a field extension of $\mathfrak{l}$. Finite by HNS2.
\item[NNT $\implies$ HNS2] Apply NNT to $L / K$$\leadsto$ alg. independent $a_i$ such that $L$ is finite over the image of $K[X_1,\ldots,X_n]\xrightarrow{\ev_a} L$ ($\ev_a : P \to P(a_1,\ldots,a_n)$).
$\ev_a(K[X_1,\ldots,X_n])$ is a field by fact about integrality and fields \ref{fintaf}. Hence $n =0$ and $L / K$ is finite.
\item[UNCHNS2]$K$ uncountable, $L / K$ fin. type. Then $\dim_K L$ is countable. Suppose $l \in L$ is not integral. Then $K(l)\cong K(T)$ and $\dim_K L \ge\dim_K K(T)\ge\aleph_1$.
Thus $L / K$ algebraic $\implies$ integral $\implies$ finite.
\item[HNS3] ($V(I)\subseteq V(f)\iff f \in\sqrt{I}$). Suppose $V(I)\subseteq V(f)$. $R' \coloneqq\mathfrak{k}[X_1,\ldots,X_n, T], J \subseteq R'$ the ideal generated by $I$ and $g(X_1,\ldots,X_n,T)\coloneqq1- Tf(X_1,\ldots,X_n)$.
\end{itemize}
% Proofs
Def of integrality (<=>)
Fact about integrality and field:
% TODO
Technical lemma for Noether normalization: For $S \subseteq\N^n$ finite, there exists $k \in\N^n$ such that $k_1=1$ and $s_1\neq s_2\in S \implies\langle k, s_1\rangle\neq\langle k, s_2\rangle$:
For $s_1\neq s_2$, % TODO
Noether normalization:
$a_i \in A$ minimal such that $A$ is integral over the subalgebra genereted by the $a_i$.
Suppose $\exists P \in K[X_1,\ldots,X_n]\setminus\{0\} ~ P(a_1,\ldots,a_n)=0$. $P =\sum_{\alpha\in\N^n} p_\alpha X^\alpha, S \coloneqq\{\alpha\in\N^n | p_\alpha\neq0\}$.
Choose $k$ as in the lemma.
$b_i \coloneqq a_{i+1}- a_1^{k_{i+1}}, 1\le i <n$. Claim: $A$ is integral ober subalgebra $B$ generated by the $b_i$ ($\lightning$ minimality)
Thus $Q(T)= p_\alpha T^{w_k(\alpha)}+\ldots$ where $\alpha\in S$ such that $w_k(\alpha)$ is maximal. Thus, $Q$ is normed.
% TODO Artin-Tate
%
A first result of dimension theory:
$A \mathfrak{l}$-algebra of finite type, $\fp, \fq\in\Spec A, \fp\subsetneq\fq$. Then $\trdeg(\mathfrak{k}(\fp)/\mathfrak{l}) > \trdeg(\mathfrak{k}(\fq)/\mathfrak{l})$:
For $\fq\in\MaxSpec A$, $\mathfrak{k}(\fq)= A /\fq$ finite type, hence finite (HNS) $\implies\trdeg(\mathfrak{k}(\fq)/\mathfrak{l})=0$.
$\trdeg(Q(A)/\mathfrak{l})=0\implies A$ integral over $\mathfrak{k}$$\implies$$A$ a field $\implies\fp=\fq\lightning$.
If $\fq\not\in\MaxSpec A$, let $a_1,\ldots,a_n \in A$ alg. independent such that the $\overline{a_i}$ are a transcendence base for $\mathfrak{k}(\fq)/\mathfrak{k}$
Let $R$ be the ring generated by $\mathfrak{l}$ and the $a_i$. Localize with respect to $S \coloneqq R \setminus\{0\}$.
%TODO
% TODO: LERNEN
% Dim k^n
$\dim(\mathfrak{k}^n)$
$\ge n$ build chian
$\le n$ a first result in dim T ($\fp\subsetneq\fq\implies\trdeg(\mathfrak{k}(\fq)/\mathfrak{l}) < \trdeg(\mathfrak{k}(\fp)/\mathfrak{l})$. Thus $\codim(X,Y)\le\trdeg(\mathfrak{K}(Y)/\mathfrak{l})-\trdeg(\mathfrak{K}(X)/\mathfrak{l})$.
TODO
% List of proofs of HNS
% Going up
% TODO proof of dim Y = trdeg(K(Y) / k)
$\dim Y \ge\trdeg(\mathfrak{k}(Y)/\mathfrak{k})$: Noether normalization. Subalgebra $\cong\mathfrak{k}[X_1,\ldots,X_d]$. Lift chain of prime ideals using going up.
% TODO prime avoidance
Action of $\Aut(L/K)$ on prime ideals of a normal ring extension. $A$ normal domain, $L / Q(A)$ normal field extension, $B$ int closure of $A$ in $L$, $\fp\in\Spec A$.
Then $\Aut(L / K)$ transitively acts on $\{\fq\in\Spec B | \fq\cap A =\fp\}$ :
\begin{itemize}
\item$\fq, \fr\in\Spec B$ lying over $\fp$.
\item only need to show $\fq\subseteq\sigma(\fr)$ for some $\sigma\in G$ (Krull going-up, no inclusions)
\item Suppose not. Then $x \in\fq\setminus\bigcup_{\sigma\in G}\sigma(\fr)$ (prime aviodance)
\item$y =\prod_{\sigma\in G}\sigma(x)\in\fq\setminus\fr$ ($\fr$ prime ideal)
\item$\exists k \in\N$ s.t. $y^k \in K$ ($y \in L^G$)
\item$y^k \in K \cap B = A $ ($A$ normal). Thus $y^k \in(A \cap\fq)\setminus(A \cap\fr)=\fp\setminus\fp$.
\item$L / K$ infinite: Apply Zorn to pairs $(M, \sigma)$ where $K \subseteq M \subseteq L$ and $\sigma\in\Aut(M /K)$ s.t. $\sigma(\fr\cap M)=\fq\cap M$.
\end{itemize}
Going down Krull %TODO
The ht p and trdeg
==================
% TODO % TODO % TODO %
% Definitions
Zariski-Topology, Spec, $\mathfrak{k}^n$
Residue field $\mathfrak{k}(\fp)\coloneqq Q(A /\fp), \mathfrak{K}(V(\fp))\coloneqq\mathfrak{k}(\fp)$. TODO?