hanabi.rs/src/game.rs
2016-03-06 03:33:14 -08:00

331 lines
9.3 KiB
Rust

use rand::{self, Rng};
use std::convert::From;
use std::collections::HashSet;
use std::collections::HashMap;
use std::fmt;
use info::*;
/*
* Type definitions
*/
pub type Color = &'static str;
pub const COLORS: [Color; 5] = ["blue", "red", "yellow", "white", "green"];
pub type Value = u32;
// list of (value, count) pairs
pub const VALUES : [Value; 5] = [1, 2, 3, 4, 5];
pub const VALUE_COUNTS : [(Value, u32); 5] = [(1, 3), (2, 2), (3, 2), (4, 2), (5, 1)];
pub const FINAL_VALUE : Value = 5;
pub struct Card {
pub color: Color,
pub value: Value,
}
impl fmt::Debug for Card {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{} {}", self.color, self.value)
}
}
#[derive(Debug)]
// basically a stack of cards, or card info
pub struct Pile<T>(Vec<T>);
impl <T> Pile<T> {
pub fn new() -> Pile<T> {
Pile(Vec::<T>::new())
}
pub fn draw(&mut self) -> Option<T> {
self.0.pop()
}
pub fn place(&mut self, item: T) {
self.0.push(item);
}
pub fn take(&mut self, index: usize) -> T {
self.0.remove(index)
}
pub fn top(&self) -> Option<&T> {
self.0.last()
}
pub fn shuffle(&mut self) {
rand::thread_rng().shuffle(&mut self.0[..]);
}
pub fn size(&self) -> usize {
self.0.len()
}
}
impl <T> From<Vec<T>> for Pile<T> {
fn from(items: Vec<T>) -> Pile<T> {
Pile(items)
}
}
pub type Cards = Pile<Card>;
pub type CardsInfo = Pile<CardInfo>;
pub type Player = u32;
#[derive(Debug)]
pub enum Hint {
Color,
Value,
}
// represents the choice a player made in a given turn
#[derive(Debug)]
pub enum TurnChoice {
Hint,
Discard(usize),
Play(usize),
}
// represents a turn taken in the game
pub struct Turn<'a> {
pub player: &'a Player,
pub choice: &'a TurnChoice,
}
// represents possible settings for the game
pub struct GameOptions {
pub num_players: u32,
pub hand_size: u32,
// when hits 0, you cannot hint
pub num_hints: u32,
// when hits 0, you lose
pub num_lives: u32,
}
// The state of a given player: all other players may see this
#[derive(Debug)]
pub struct PlayerState {
// the player's actual hand
pub hand: Cards,
// represents what is common knowledge about the player's hand
pub info: CardsInfo,
}
// State of everything except the player's hands
// Is all completely common knowledge
#[derive(Debug)]
pub struct BoardState {
deck: Cards,
pub discard: Cards,
pub fireworks: HashMap<Color, Cards>,
pub num_players: u32,
// which turn is it?
pub turn: u32,
// // whose turn is it?
pub player: Player,
pub hints_total: u32,
pub hints_remaining: u32,
pub lives_total: u32,
pub lives_remaining: u32,
// only relevant when deck runs out
deckless_turns_remaining: u32,
}
// complete game view of a given player
// state will be borrowed GameState
#[derive(Debug)]
pub struct GameStateView<'a> {
// the player whose view it is
pub player: Player,
// what is known about their own hand (and thus common knowledge)
pub info: &'a CardsInfo,
// the cards of the other players, as well as the information they have
pub other_player_states: HashMap<Player, &'a PlayerState>,
// board state
pub board: &'a BoardState,
}
// complete game state (known to nobody!)
#[derive(Debug)]
pub struct GameState {
pub player_states: HashMap<Player, PlayerState>,
pub board: BoardState,
}
pub type Score = u32;
impl GameState {
pub fn new(opts: &GameOptions) -> GameState {
let mut deck = GameState::make_deck();
let mut player_states : HashMap<Player, PlayerState> = HashMap::new();
for i in 0..opts.num_players {
let raw_hand = (0..opts.hand_size).map(|_| {
// we can assume the deck is big enough to draw initial hands
deck.draw().unwrap()
}).collect::<Vec<_>>();
let infos = (0..opts.hand_size).map(|_| {
CardInfo::new()
}).collect::<Vec<_>>();
let state = PlayerState {
hand: Cards::from(raw_hand),
info: CardsInfo::from(infos),
};
player_states.insert(i, state);
}
let mut fireworks : HashMap<Color, Cards> = HashMap::new();
for color in COLORS.iter() {
let mut firework = Cards::new();
let card = Card { value: 0, color: color };
firework.place(card);
fireworks.insert(color, firework);
}
GameState {
player_states: player_states,
board: BoardState {
deck: deck,
fireworks: fireworks,
discard: Cards::new(),
num_players: opts.num_players,
player: 0,
turn: 1,
hints_total: opts.num_hints,
hints_remaining: opts.num_hints,
lives_total: opts.num_lives,
lives_remaining: opts.num_lives,
// number of turns to play with deck length ran out
deckless_turns_remaining: opts.num_players + 1,
}
}
}
fn make_deck() -> Cards {
let mut deck: Cards = Cards::from(Vec::new());
for color in COLORS.iter() {
for &(value, count) in VALUE_COUNTS.iter() {
for _ in 0..count {
deck.place(Card {color: color, value: value});
}
}
};
deck.shuffle();
info!("Created deck: {:?}", deck);
deck
}
pub fn get_players(&self) -> Vec<Player> {
(0..self.board.num_players).collect::<Vec<_>>()
}
pub fn is_over(&self) -> bool {
// TODO: add condition that fireworks cannot be further completed?
(self.board.lives_remaining == 0) ||
(self.board.deckless_turns_remaining == 0)
}
pub fn score(&self) -> Score {
let mut score = 0;
for (_, firework) in &self.board.fireworks {
// subtract one to account for the 0 we pushed
score += firework.size() - 1;
}
score as u32
}
// get the game state view of a particular player
pub fn get_view(&self, player: Player) -> GameStateView {
let mut other_player_states = HashMap::new();
for (other_player, state) in &self.player_states {
if player != *other_player {
other_player_states.insert(player, state);
}
}
GameStateView {
player: player,
info: &self.player_states.get(&player).unwrap().info,
other_player_states: other_player_states,
board: &self.board,
}
}
// takes a card from the player's hand, and replaces it if possible
fn take_from_hand(&mut self, index: usize) -> Card {
let ref mut state = self.player_states.get_mut(&self.board.player).unwrap();
let card = state.hand.take(index);
state.info.take(index);
if let Some(new_card) = self.board.deck.draw() {
state.hand.place(new_card);
state.info.place(CardInfo::new());
}
card
}
fn try_add_hint(&mut self) {
if self.board.hints_remaining < self.board.hints_total {
self.board.hints_remaining += 1;
}
}
pub fn process_choice(&mut self, choice: &TurnChoice) {
match *choice {
TurnChoice::Hint => {
assert!(self.board.hints_remaining > 0);
self.board.hints_remaining -= 1;
// TODO: actually inform player of values..
// nothing to update, really...
// TODO: manage common knowledge
}
TurnChoice::Discard(index) => {
let card = self.take_from_hand(index);
self.board.discard.place(card);
self.try_add_hint();
}
TurnChoice::Play(index) => {
let card = self.take_from_hand(index);
debug!(
"Here! Playing card at {}, which is {:?}",
index, card
);
let mut firework_made = false;
{
let ref mut firework = self.board.fireworks.get_mut(&card.color).unwrap();
let playable = {
let under_card = firework.top().unwrap();
card.value == under_card.value + 1
};
if playable {
firework_made = card.value == FINAL_VALUE;
firework.place(card);
} else {
self.board.discard.place(card);
self.board.lives_remaining -= 1;
debug!(
"Removing a life! Lives remaining: {}",
self.board.lives_remaining
);
}
}
if firework_made {
self.try_add_hint();
}
}
}
if self.board.deck.size() == 0 {
self.board.deckless_turns_remaining -= 1;
}
self.board.turn += 1;
self.board.player = (self.board.player + 1) % self.board.num_players;
assert_eq!((self.board.turn - 1) % self.board.num_players, self.board.player);
}
}