Py-Hanabi/hanabi/hanab_game.py

367 lines
14 KiB
Python

from typing import Optional, List, Generator
from enum import Enum
from termcolor import colored
from hanabi import constants
class ParseError(ValueError):
pass
class DeckCard:
def __init__(self, suitIndex: int, rank: int, deck_index=None):
self.suitIndex: int = suitIndex
self.rank: int = rank
self.deck_index: Optional[int] = deck_index
@staticmethod
def from_json(deck_card):
suit_index = deck_card.get('suitIndex', None)
rank = deck_card.get('rank', None)
if suit_index is None:
raise ParseError("No suit index specified in deck_card")
if rank is None:
raise ParseError("No rank specified in deck_card")
return DeckCard(suit_index, rank)
def colorize(self):
color = ["green", "blue", "magenta", "yellow", "white", "cyan"][self.suitIndex]
return colored(str(self), color)
def __eq__(self, other):
return self.suitIndex == other.suitIndex and self.rank == other.rank
def __repr__(self):
return constants.COLOR_INITIALS[self.suitIndex] + str(self.rank)
def __hash__(self):
# should be injective enough, we never use cards with ranks differing by 1000
return 1000 * self.suitIndex + self.rank
def pp_deck(deck: Generator[DeckCard, None, None]) -> str:
return "[" + ", ".join(card.colorize() for card in deck) + "]"
class ActionType(Enum):
Play = 0
Discard = 1
ColorClue = 2
RankClue = 3
EndGame = 4
VoteTerminate = 5 ## hack: online, this is encoded as a 10
class Action:
def __init__(self, type_: ActionType, target: int, value: Optional[int] = None):
self.type = type_
self.target = target
self.value = value
# enforce no values on play / discard
if self.type in [ActionType.Discard, ActionType.Play]:
self.value = None
@staticmethod
def from_json(action):
action_type_int = action.get('type', None)
action_target = action.get('target', None)
action_value = action.get('value', None)
if action_type_int is None:
raise ParseError("No action type specified in action, found {}".format(action_type))
if action_target is None:
raise ParseError("No action target specified in action, found {}".format(action_target))
for val in [action_type_int, action_target, action_value]:
if val is not None and type(val) != int:
raise ParseError("Invalid data type in action, expected int, found {}".format(type(val)))
try:
action_type = ActionType(action_type_int)
except ValueError as e:
raise ParseError("Invalid action type, found {}".format(action_type_int)) from e
return Action(
action_type,
action_target,
action_value
)
def __repr__(self):
match self.type:
case ActionType.Play:
return "Play card {}".format(self.target)
case ActionType.Discard:
return "Discard card {}".format(self.target)
case ActionType.ColorClue:
return "Clue color {} to player {}".format(self.value, self.target)
case ActionType.RankClue:
return "Clue rank {} to player {}".format(self.value, self.target)
case ActionType.EndGame:
return "Player {} ends the game (code {})".format(self.target, self.value)
case ActionType.VoteTerminate:
return "Players vote to terminate the game (code {})".format(self.value)
return "Undefined action"
def __eq__(self, other):
return self.type == other.type and self.target == other.target and self.value == other.value
class HanabiInstance:
# TODO Max: Deal with the following variants:
# - Critical fours (need to calculate dark suits differently)
# - Reversed (need to store information somehow and pass this to the hanabi game class)
# - Up or Down (in the long run we also want this, but seems a bit tedious, not needed now)
def __init__(
self,
deck: List[DeckCard],
# assumes a default deck, every suit has to be distributed either [1,1,1,2,2,3,3,4,4,5] or [1,2,3,4,5]
num_players: int, # number of players that play this deck, in range [2,6]
hand_size: Optional[int] = None, # number of cards that each player holds
num_strikes: Optional[int] = None, # number of strikes that leads to game loss
clue_starved: bool = False, # if true, discarding and playing fives only gives back half a clue
fives_give_clue: bool = True, # if false, then playing a five will not change the clue count
deck_plays: bool = False,
all_or_nothing: bool = False,
starting_player: int = 0 # defines index of player that starts the game
):
# defining properties
self.deck = deck
self.num_players = num_players
self.hand_size = hand_size or constants.HAND_SIZES[self.num_players]
self.num_strikes = num_strikes or constants.NUM_STRIKES
self.clue_starved = clue_starved
self.fives_give_clue = fives_give_clue
self.deck_plays = deck_plays,
self.all_or_nothing = all_or_nothing
assert not self.all_or_nothing, "All or nothing not implemented"
self.starting_player = starting_player
# normalize deck indices
for (idx, card) in enumerate(self.deck):
card.deck_index = idx
# deducable properties, to be calculated once
self.num_suits = max(map(lambda c: c.suitIndex, deck)) + 1
self.num_dark_suits = (len(deck) - 10 * self.num_suits) // (-5)
self.player_names = constants.PLAYER_NAMES[:self.num_players]
self.deck_size = len(self.deck)
self.initial_pace = self.deck_size - 5 * self.num_suits - self.num_players * (self.hand_size - 1)
# # maximum number of moves in any game that can achieve max score each suit gives 15 moves, as we can play
# and discard 5 cards each and give 5 clues. dark suits only give 5 moves, since no discards are added number
# of cards that remain in players hands after end of game. they cost 2 turns each, since we cannot discard
# them and also have one clue less 8 clues at beginning, one further clue for each suit but one (the clue of
# the last 5 is never useful since it is gained in the extra-round) subtract a further move for a second
# 5-clue that can't be used in 5 or 6-player games, since the extraround starts too soon
self.max_winning_moves = 15 * self.num_suits - 10 * self.num_dark_suits \
- 2 * self.num_players * (self.hand_size - 1) \
+ 8 + (self.num_suits - 1) \
+ (-1 if self.num_players >= 5 else 0)
@property
def num_dealt_cards(self):
return self.num_players * self.hand_size
@property
def draw_pile_size(self):
return self.deck_size - self.num_dealt_cards
@property
def max_score(self):
return 5 * self.num_suits
@property
def clue_increment(self):
return 0.5 if self.clue_starved else 1
@property
def dark_suits(self):
return list(range(self.num_suits - self.num_dark_suits, self.num_suits))
class GameState:
def __init__(self, instance: HanabiInstance):
# will not be modified
self.instance = instance
# dynamic game state
self.progress = self.instance.num_players * self.instance.hand_size # index of next card to be drawn
self.hands = [self.instance.deck[self.instance.hand_size * p: self.instance.hand_size * (p + 1)] for p in
range(0, self.instance.num_players)]
self.stacks = [0 for i in range(0, self.instance.num_suits)]
self.strikes = 0
self.clues = 8
self.turn = self.instance.starting_player
self.pace = self.instance.initial_pace
self.remaining_extra_turns = self.instance.num_players + 1
self.trash = []
# can be set to true if game is known to be in a lost state
self.in_lost_state = False
# automatically set upon third strike, when extar round is over or when explicitly taking EndGame or
# VoteTerminate actions
self.over = False
# will track replay as game progresses
self.actions = []
# Methods to control game state change
def play(self, card_idx):
card = self.instance.deck[card_idx]
if card.rank == self.stacks[card.suitIndex] + 1:
self.stacks[card.suitIndex] += 1
if card.rank == 5 and self.clues != 8 and self.instance.fives_give_clue:
self.clues += self.instance.clue_increment
else:
self.strikes += 1
self.trash.append(self.instance.deck[card_idx])
self.pace -= 1
self.actions.append(Action(ActionType.Play, target=card_idx))
self._replace(card_idx, allow_not_present=self.instance.deck_plays and (card_idx == self.deck_size - 1))
self._make_turn()
if all(s == 5 for s in self.stacks) or self.strikes >= self.instance.num_strikes:
self.over = True
def discard(self, card_idx):
assert (self.clues < 8)
self.actions.append(Action(ActionType.Discard, target=card_idx))
self.clues += self.instance.clue_increment
self.pace -= 1
self.trash.append(self.instance.deck[card_idx])
self._replace(card_idx)
self._make_turn()
def clue(self):
assert (self.clues > 0)
self.actions.append(self._waste_clue())
self.clues -= 1
self._make_turn()
# Forward some properties of the underlying instance
@property
def num_players(self):
return self.instance.num_players
@property
def num_suits(self):
return self.instance.num_suits
@property
def num_dark_suits(self):
return self.instance.num_dark_suits
@property
def deck(self):
return self.instance.deck
@property
def hand_size(self):
return self.instance.hand_size
@property
def deck_size(self):
return self.instance.deck_size
# Properties of GameState
def is_over(self):
return self.over or self.is_known_lost()
def is_won(self):
return self.score == self.instance.max_score
def is_known_lost(self):
return self.in_lost_state
@property
def score(self):
if self.strikes >= self.instance.num_strikes:
return 0
return sum(self.stacks)
@property
def cur_hand(self):
return self.hands[self.turn]
# Utilities
def holding_players(self, card):
for (player, hand) in enumerate(self.hands):
if card in hand:
yield player
def to_json(self):
# ensure we have at least one action
if len(self.actions) == 0:
self.actions.append(Action(
ActionType.EndGame,
target=0
)
)
return {
"deck": self.instance.deck,
"players": self.instance.player_names,
"actions": self.actions,
"first_player": 0,
"options": {
"variant": "No Variant",
}
}
# Query helpers for implementing bots
def copy_holders(self, card: DeckCard, exclude_player: Optional[int]):
return [
player for player in range(self.num_players)
if player != exclude_player and card in self.hands[player]
]
@staticmethod
def in_strict_order(player_a, player_b, player_c):
"""
Check whether the three given players sit in order, where equality is not allowed
:param player_a:
:param player_b:
:param player_c:
:return:
"""
return player_a < player_b < player_c or player_b < player_c < player_a or player_c < player_a < player_b
def is_in_extra_round(self):
return self.remaining_extra_turns <= self.instance.num_players
# Private helpers
# increments turn counter and tracks extra round
def _make_turn(self):
assert (not self.over)
self.turn = (self.turn + 1) % self.instance.num_players
if self.progress == self.instance.deck_size:
self.remaining_extra_turns -= 1
if self.remaining_extra_turns == 0:
self.over = True
# replaces the specified card (has to be in current player's hand) with the next card of the deck (if nonempty)
def _replace(self, card_idx, allow_not_present: bool = False):
try:
idx_in_hand = next((i for (i, card) in enumerate(self.cur_hand) if card.deck_index == card_idx))
except StopIteration:
if not allow_not_present:
raise
self.progress += 1
return
for i in range(idx_in_hand, self.instance.hand_size - 1):
self.cur_hand[i] = self.cur_hand[i + 1]
if self.progress < self.instance.deck_size:
self.cur_hand[self.instance.hand_size - 1] = self.instance.deck[self.progress]
self.progress += 1
# in HanabLiveInstances, this will be overridden with something that checks defaults
def _waste_clue(self) -> Action:
return Action(
ActionType.RankClue,
target=(self.turn + 1) % self.instance.num_players, # clue next plyaer
value=self.hands[(self.turn + 1) % self.instance.num_players][0].rank # clue index 0
)