import copy from typing import Optional, Tuple from pysmt.shortcuts import Symbol, Bool, Not, Implies, Iff, And, Or, AtMostOne, get_model, Equals, GE, NotEquals, Int from pysmt.typing import INT from hanabi import logger from hanabi import constants from hanabi import hanab_game # literals to model game as sat instance to check for feasibility # variants 'throw it in a hole not handled', 'clue starved' and 'up or down' currently not handled class Literals(): # num_suits is total number of suits, i.e. also counts the dark suits # default distribution among all suits is assumed def __init__(self, instance: hanab_game.HanabiInstance): # clues[m][i] == "after move m we have i clues", in clue starved, this counts half clues self.clues = { -1: Int(16 if instance.clue_starved else 8) # we have 8 clues after turn , **{ m: Symbol('m{}clues'.format(m), INT) for m in range(instance.max_winning_moves) } } self.pace = { -1: Int(instance.initial_pace) , **{ m: Symbol('m{}pace'.format(m), INT) for m in range(instance.max_winning_moves) } } # strikes[m][i] == "after move m we have at least i strikes" self.strikes = { -1: {i: Bool(i == 0) for i in range(0, instance.num_strikes + 1)} # no strikes when we start , **{ m: { 0: Bool(True), **{s: Symbol('m{}strikes{}'.format(m, s)) for s in range(1, instance.num_strikes)}, instance.num_strikes: Bool(False) # never so many clues that we lose. Implicitly forbids striking out } for m in range(instance.max_winning_moves) } } # extraturn[m] = "turn m is a move part of the extra round or a dummy turn" self.extraround = { -1: Bool(False) , **{ m: Bool(False) if m < instance.draw_pile_size else Symbol('m{}extra'.format(m)) # it takes at least as many turns as cards in the draw pile to start the extra round for m in range(0, instance.max_winning_moves) } } # dummyturn[m] = "turn m is a dummy nurn and not actually part of the game" self.dummyturn = { -1: Bool(False) , **{ m: Bool(False) if m < instance.draw_pile_size + instance.num_players else Symbol('m{}dummy'.format(m)) for m in range(0, instance.max_winning_moves) } } # draw[m][i] == "at move m we play/discard deck[i]" self.discard = { m: {i: Symbol('m{}discard{}'.format(m, i)) for i in range(instance.deck_size)} for m in range(instance.max_winning_moves) } # draw[m][i] == "at move m we draw deck card i" self.draw = { -1: {i: Bool(i == instance.num_dealt_cards - 1) for i in range(instance.num_dealt_cards - 1, instance.deck_size)} , **{ m: { instance.num_dealt_cards - 1: Bool(False), **{i: Symbol('m{}draw{}'.format(m, i)) for i in range(instance.num_dealt_cards, instance.deck_size)} } for m in range(instance.max_winning_moves) } } # strike[m] = "at move m we get a strike" self.strike = { -1: Bool(False) , **{ m: Symbol('m{}newstrike'.format(m)) for m in range(instance.max_winning_moves) } } # progress[m][card = (suitIndex, rank)] == "after move m we have played in suitIndex up to rank" self.progress = { -1: {(s, r): Bool(r == 0) for s in range(0, instance.num_suits) for r in range(0, 6)} # at start, have only played rank zero , **{ m: { **{(s, 0): Bool(True) for s in range(0, instance.num_suits)}, **{(s, r): Symbol('m{}progress{}{}'.format(m, s, r)) for s in range(0, instance.num_suits) for r in range(1, 6)} } for m in range(instance.max_winning_moves) } } ## Utility variables # discard_any[m] == "at move m we play/discard a card" self.discard_any = {m: Symbol('m{}discard_any'.format(m)) for m in range(instance.max_winning_moves)} # draw_any[m] == "at move m we draw a card" self.draw_any = {m: Symbol('m{}draw_any'.format(m)) for m in range(instance.max_winning_moves)} # play[m] == "at move m we play a card" self.play = {m: Symbol('m{}play'.format(m)) for m in range(instance.max_winning_moves)} # play5[m] == "at move m we play a 5" self.play5 = {m: Symbol('m{}play5'.format(m)) for m in range(instance.max_winning_moves)} # incr_clues[m] == "at move m we obtain a clue" self.incr_clues = {m: Symbol('m{}c+'.format(m)) for m in range(instance.max_winning_moves)} def solve_sat(starting_state: hanab_game.GameState | hanab_game.HanabiInstance, min_pace: Optional[int] = 0) -> Tuple[ bool, Optional[hanab_game.GameState]]: if isinstance(starting_state, hanab_game.HanabiInstance): instance = starting_state game_state = hanab_game.GameState(instance) elif isinstance(starting_state, hanab_game.GameState): instance = starting_state.instance game_state = starting_state else: raise ValueError("Bad argument type") ls = Literals(instance) ##### setup of initial game state # properties used later to model valid moves starting_hands = [[card.deck_index for card in hand] for hand in game_state.hands] first_turn = len(game_state.actions) if isinstance(starting_state, hanab_game.GameState): # have to set additional variables # set initial clues for i in range(0, 10): ls.clues[first_turn - 1] = Int(game_state.clues) # set initial pace ls.pace[first_turn - 1] = Int(game_state.pace) # set initial strikes for i in range(0, instance.num_strikes + 1): ls.strikes[first_turn - 1][i] = Bool(i <= game_state.strikes) # check if extraround has started (usually not) ls.extraround[first_turn - 1] = Bool(game_state.remaining_extra_turns < game_state.num_players) ls.dummyturn[first_turn - 1] = Bool(False) # set recent draws: important to model progress # we just pretend that the last card drawn was in fact drawn last turn, # regardless of when it was actually drawn for neg_turn in range(1, min(9, first_turn + 2)): for i in range(instance.num_players * instance.hand_size, instance.deck_size): ls.draw[first_turn - neg_turn][i] = Bool(neg_turn == 1 and i == game_state.progress - 1) # forbid re-drawing of the last card drawn for m in range(first_turn, instance.max_winning_moves): ls.draw[m][game_state.progress - 1] = Bool(False) # model initial progress for s in range(0, game_state.num_suits): for r in range(0, 6): ls.progress[first_turn - 1][s, r] = Bool(r <= game_state.stacks[s]) ### Now, model all valid moves valid_move = lambda m: And( # in dummy turns, nothing can be discarded Implies(ls.dummyturn[m], Not(ls.discard_any[m])), # definition of discard_any Iff(ls.discard_any[m], Or(ls.discard[m][i] for i in range(instance.deck_size))), # definition of draw_any Iff(ls.draw_any[m], Or(ls.draw[m][i] for i in range(game_state.progress, instance.deck_size))), # ls.draw implies ls.discard (and converse true before the ls.extraround) Implies(ls.draw_any[m], ls.discard_any[m]), Implies(ls.discard_any[m], Or(ls.extraround[m], ls.draw_any[m])), # ls.play requires ls.discard Implies(ls.play[m], ls.discard_any[m]), # definition of ls.play5 Iff(ls.play5[m], And(ls.play[m], Or(ls.discard[m][i] for i in range(instance.deck_size) if instance.deck[i].rank == 5))), # definition of ls.incr_clues Iff(ls.incr_clues[m], And(ls.discard_any[m], NotEquals(ls.clues[m - 1], Int(16 if instance.clue_starved else 8)), Implies(ls.play[m], ls.play5[m]))), # change of ls.clues Implies(And(Not(ls.discard_any[m]), Not(ls.dummyturn[m])), Equals(ls.clues[m], ls.clues[m - 1] - (2 if instance.clue_starved else 1))), Implies(ls.incr_clues[m], Equals(ls.clues[m], ls.clues[m - 1] + 1)), Implies(And(Or(ls.discard_any[m], ls.dummyturn[m]), Not(ls.incr_clues[m])), Equals(ls.clues[m], ls.clues[m - 1])), # change of pace Implies(And(ls.discard_any[m], Or(ls.strike[m], Not(ls.play[m]))), Equals(ls.pace[m], ls.pace[m - 1] - 1)), Implies(Or(Not(ls.discard_any[m]), And(Not(ls.strike[m]), ls.play[m])), Equals(ls.pace[m], ls.pace[m - 1])), # pace is nonnegative GE(ls.pace[m], Int(min_pace)), ## more than 8 clues not allowed, ls.discarding produces a strike # Note that this means that we will never strike while not at 8 clues. # It's easy to see that if there is any solution to the instance, then there is also one where we only strike at 8 clues # (or not at all) -> Just strike later if neccessary # So, we decrease the solution space with this formulation, but do not change whether it's empty or not Iff(ls.strike[m], And(ls.discard_any[m], Not(ls.play[m]), Equals(ls.clues[m - 1], Int(16 if instance.clue_starved else 8)))), # change of strikes *[Iff(ls.strikes[m][i], Or(ls.strikes[m - 1][i], And(ls.strikes[m - 1][i - 1], ls.strike[m]))) for i in range(1, instance.num_strikes + 1)], # less than 0 clues not allowed Implies(Not(ls.discard_any[m]), Or(GE(ls.clues[m - 1], Int(1)), ls.dummyturn[m])), # we can only draw card i if the last ls.drawn card was i-1 *[Implies(ls.draw[m][i], Or( And(ls.draw[m0][i - 1], *[Not(ls.draw_any[m1]) for m1 in range(m0 + 1, m)]) for m0 in range(max(first_turn - 1, m - 9), m))) for i in range(game_state.progress, instance.deck_size)], # we can only draw at most one card (NOTE: redundant, FIXME: avoid quadratic formula) AtMostOne(ls.draw[m][i] for i in range(game_state.progress, instance.deck_size)), # we can only discard a card if we drew it earlier... *[Implies(ls.discard[m][i], Or(ls.draw[m0][i] for m0 in range(m - instance.num_players, first_turn - 1, -instance.num_players))) for i in range(game_state.progress, instance.deck_size)], # ...or if it was part of the initial hand *[Not(ls.discard[m][i]) for i in range(0, game_state.progress) if i not in starting_hands[m % instance.num_players]], # we can only discard a card if we did not discard it yet *[Implies(ls.discard[m][i], And( Not(ls.discard[m0][i]) for m0 in range(m - instance.num_players, first_turn - 1, -instance.num_players))) for i in range(instance.deck_size)], # we can only discard at most one card (FIXME: avoid quadratic formula) AtMostOne(ls.discard[m][i] for i in range(instance.deck_size)), # we can only play a card if it matches the progress *[Implies( And(ls.discard[m][i], ls.play[m]), And( Not(ls.progress[m - 1][instance.deck[i].suitIndex, instance.deck[i].rank]), ls.progress[m - 1][instance.deck[i].suitIndex, instance.deck[i].rank - 1] ) ) for i in range(instance.deck_size) ], # change of progress *[ Iff( ls.progress[m][s, r], Or( ls.progress[m - 1][s, r], And(ls.play[m], Or(ls.discard[m][i] for i in range(0, instance.deck_size) if instance.deck[i] == hanab_game.DeckCard(s, r))) ) ) for s in range(0, instance.num_suits) for r in range(1, 6) ], # extra round bool Iff(ls.extraround[m], Or(ls.extraround[m - 1], ls.draw[m - 1][instance.deck_size - 1])), # dummy turn bool *[Iff(ls.dummyturn[m], Or(ls.dummyturn[m - 1], ls.draw[m - 1 - instance.num_players][instance.deck_size - 1])) for i in range(0, 1) if m >= instance.num_players] ) win = And( # maximum progress at each color *[ls.progress[instance.max_winning_moves - 1][s, 5] for s in range(0, instance.num_suits)], # played every color/value combination (NOTE: redundant, but makes solving faster) *[ Or( And(ls.discard[m][i], ls.play[m]) for m in range(first_turn, instance.max_winning_moves) for i in range(instance.deck_size) if game_state.deck[i] == hanab_game.DeckCard(s, r) ) for s in range(0, instance.num_suits) for r in range(1, 6) if r > game_state.stacks[s] ] ) constraints = And(*[valid_move(m) for m in range(first_turn, instance.max_winning_moves)], win) # print('Solving instance with {} variables, {} nodes'.format(len(get_atoms(constraints)), get_formula_size(constraints))) model = get_model(constraints) if model: log_model(model, game_state, ls) solution = evaluate_model(model, copy.deepcopy(game_state), ls) return True, solution else: # conj = list(conjunctive_partition(constraints)) # print('statements: {}'.format(len(conj))) # ucore = get_unsat_core(conj) # print('unsat core size: {}'.format(len(ucore))) # for f in ucore: # print(f.serialize()) return False, None def log_model(model, cur_game_state, ls: Literals): deck = cur_game_state.deck first_turn = len(cur_game_state.actions) if first_turn > 0: logger.debug('[print_model] Note: Omitting first {} turns, since they were fixed already.'.format(first_turn)) for m in range(first_turn, cur_game_state.instance.max_winning_moves): logger.debug('=== move {} ==='.format(m)) logger.debug('clues: {}'.format(model.get_py_value(ls.clues[m]))) logger.debug('strikes: ' + ''.join(str(i) for i in range(1, 3) if model.get_py_value(ls.strikes[m][i]))) logger.debug('draw: ' + ', '.join( '{}: {}'.format(i, deck[i]) for i in range(cur_game_state.progress, cur_game_state.instance.deck_size) if model.get_py_value(ls.draw[m][i]))) logger.debug('discard: ' + ', '.join( '{}: {}'.format(i, deck[i]) for i in range(cur_game_state.instance.deck_size) if model.get_py_value(ls.discard[m][i]))) logger.debug('pace: {}'.format(model.get_py_value(ls.pace[m]))) for s in range(0, cur_game_state.instance.num_suits): logger.debug('progress {}: '.format(constants.COLOR_INITIALS[s]) + ''.join( str(r) for r in range(1, 6) if model.get_py_value(ls.progress[m][s, r]))) flags = ['discard_any', 'draw_any', 'play', 'play5', 'incr_clues', 'strike', 'extraround', 'dummyturn'] logger.debug(', '.join(f for f in flags if model.get_py_value(getattr(ls, f)[m]))) # given the initial game state and the model found by the SAT solver, # evaluates the model to produce a full game history def evaluate_model(model, cur_game_state: hanab_game.GameState, ls: Literals) -> hanab_game.GameState: for m in range(len(cur_game_state.actions), cur_game_state.instance.max_winning_moves): if model.get_py_value(ls.dummyturn[m]) or cur_game_state.is_over(): break if model.get_py_value(ls.discard_any[m]): card_idx = next( i for i in range(0, cur_game_state.instance.deck_size) if model.get_py_value(ls.discard[m][i])) if model.get_py_value(ls.play[m]) or model.get_py_value(ls.strike[m]): cur_game_state.play(card_idx) else: cur_game_state.discard(card_idx) else: cur_game_state.clue() return cur_game_state