Compare commits
1 commit
main
...
debug-expo
Author | SHA1 | Date | |
---|---|---|---|
1d266d7e35 |
44 changed files with 1848 additions and 3072 deletions
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -4,7 +4,6 @@ hanab.live
|
|||
venv/
|
||||
# pycache dir
|
||||
__pycache__
|
||||
test.py
|
||||
|
||||
|
||||
# a few output files
|
||||
|
|
674
LICENSE
674
LICENSE
|
@ -1,674 +0,0 @@
|
|||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
Hanabi
|
||||
Copyright (C) 2023 Maximilian Keßler
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) 2023 Maximilian Keßler
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<https://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
50
README.md
50
README.md
|
@ -1,9 +1,10 @@
|
|||
# Hanabi-Suite
|
||||
|
||||
Disclaimer: This repository is still not in a good cleaned up code style, mainly due to me lacking time to clean stuff up properly.
|
||||
Do not expect everything to work, do not expect everything to be well-documented.
|
||||
Disclaimer: This repository is still not in a good cleaned up code style, mainly due to me lacking time to clean stuff up properly
|
||||
Do not expect everything to work, do not expect everything to be well-documented
|
||||
However, I try to improve this from now on so that eventually, reasonable interfaces will exist so that this becomes actually more usable than now
|
||||
|
||||
Generally speaking, stuff that is already in a proper package/subfolder should be alright and I plan to keep it clean (also with a clean git history)
|
||||
|
||||
## What is this?
|
||||
|
||||
|
@ -37,48 +38,5 @@ Apart from the obvious use-cases for some features, I want to explore boundaries
|
|||
- Analyse every seed on hanab.live for feasibility
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
### Python
|
||||
The hanabi folder is a working python package that you should be able to import if it's in your python path.
|
||||
You will need to install the `requirements.txt` as usual, I recommend setting up a `venv`:
|
||||
```
|
||||
python -m venv venv
|
||||
source venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### SAT-solver
|
||||
After installing python, you should have installed `pysmt` with it, an interface to use SAT-solvers with python.
|
||||
We still need a solver, for this, run
|
||||
```
|
||||
$ pysmt-install --help
|
||||
// Pick a solver, e.g. z3 works
|
||||
$ pysmt-install --z3
|
||||
```
|
||||
|
||||
### PostgreSQL
|
||||
You need to install PostgreSQL on your system, for installation instructions refer to your distribution.
|
||||
Create a new database and user, for example:
|
||||
```
|
||||
$ sudo -iu postgres
|
||||
$ psql
|
||||
# CREATE USER hanabi WITH PASSWORD 'Insert password here';
|
||||
# CREATE DATABASE "hanab-live" with owner "hanabi";
|
||||
```
|
||||
Put the connection parameters in a config file (for the format, see `example_config.yaml`).
|
||||
This should be located at your system default for the application `hanabi-suite`,
|
||||
on POSIX systems this should be `~/.config/hanabi-suite/config.yaml`.
|
||||
|
||||
|
||||
## Usage of stuff that already works:
|
||||
Use the `hanabi_suite.py` CLI interface to download games and analyze them.
|
||||
An initial setup might look like this:
|
||||
|
||||
```
|
||||
hanabi_cli.py gen-config // Generates configuration file for DB connection parameters and prints its location
|
||||
<Edit your configuration file>
|
||||
hanabi_cli.py init // Initializes database tables
|
||||
hanabi_cli.py download --var 0 // Donwloads information on all 'No Variant' games
|
||||
hanabi_cli.py analyze --download <game id> // Downloads and analyzes game from hanab.live
|
||||
```
|
||||
Use the `hanabi_suite.py` CLI interface to download games and analyze them
|
||||
|
|
54
cheating_strategy
Normal file
54
cheating_strategy
Normal file
|
@ -0,0 +1,54 @@
|
|||
card types:
|
||||
trash, playable, useful (dispensable), critical
|
||||
|
||||
|
||||
pace := #(cards left in deck) + #players - #(cards left to play)
|
||||
modified_pace := pace - #(players without useful cards)
|
||||
endgame := #(cards left to play) - #(cards left in deck) = #players - pace
|
||||
-> endgame >= 0 iff pace <= #players
|
||||
in_endgame := endgame >= 0
|
||||
|
||||
discard_badness(card) :=
|
||||
1 if trash
|
||||
8 - #players if card useful but duplicate visible # TODO: should probably account for rank of card as well, currently, lowest one is chosen
|
||||
80 - 10*rank if card is not critical but currently unique # this ensures we prefer to discard higher ranked cards
|
||||
600 - 100*rank if only criticals in hand # essentially not relevant, since we are currently only optimizing for full score
|
||||
|
||||
|
||||
Algorithm:
|
||||
|
||||
if (have playable card):
|
||||
if (in endgame) and not (in extraround):
|
||||
stall in the following situations:
|
||||
- we have exactly one useful card, it is a 5, and a copy of each useful card is visible
|
||||
- we have exactly one useful card, it is a 4, the player with the matching 5 has another critical card to play
|
||||
- we have exactly one useful card (todo: maybe use critical here?), the deck has size 1, someone else has 2 crits
|
||||
- we have exactly one playable card, it is a 4, and a further useful card, but the playable is redistributable in the following sense:
|
||||
the other playing only has this one useful card, and the player holding the matching 5 sits after the to-be-redistributed player
|
||||
- sth else that seems messy and is currently not understood, ignored for now
|
||||
TODO: maybe introduce some midgame stalls here, since we know the deck?
|
||||
play a card, matching the first of the following criteria. if several cards match, recurse with this set of cards
|
||||
- if in extraround, play crit
|
||||
- if in second last round and we have 2 crits, play crit
|
||||
- play card with lowest rank
|
||||
- play a critical card
|
||||
- play unique card, i.e. not visible
|
||||
- lowest suit index (for determinancy)
|
||||
|
||||
if 8 hints:
|
||||
give a hint
|
||||
|
||||
if 0 hints:
|
||||
discard card with lowest badness
|
||||
|
||||
stall in the following situations:
|
||||
- #(cards in deck) == 2 and (card of rank 3 or lower is missing) and we have the connecting card
|
||||
- #clues >= 8 - #(useful cards in hand), there are useful cards in the deck and either:
|
||||
- the next player has no useful cards at all
|
||||
- we have two more crits than the next player and they have trash
|
||||
- we are in endgame and the deck only contains one card
|
||||
- it is possible that no-one discards in the following round and we are not waiting for a card whose rank is smaller than pace // TODO: this feels like a weird condition
|
||||
|
||||
discard if (discard badness) + #hints < 10
|
||||
|
||||
stall if someone has a better discard
|
|
@ -1,14 +1,12 @@
|
|||
import copy
|
||||
from typing import Tuple
|
||||
from typing import Tuple, Optional
|
||||
|
||||
from hanabi import logger
|
||||
from hanabi import database
|
||||
from hanabi import hanab_game
|
||||
from hanabi.live import hanab_live
|
||||
from hanabi.live import compress
|
||||
from hanabi.solvers import sat
|
||||
|
||||
from hanabi.database import games_db_interface
|
||||
from database.database import conn
|
||||
from compress import decompress_deck, decompress_actions, link
|
||||
from hanabi import Action, GameState
|
||||
from hanab_live import HanabLiveInstance, HanabLiveGameState
|
||||
from sat import solve_sat
|
||||
from log_setup import logger
|
||||
|
||||
|
||||
# returns minimal number T of turns (from game) after which instance was infeasible
|
||||
|
@ -18,55 +16,59 @@ from hanabi.database import games_db_interface
|
|||
# returns 1 if instance is feasible but first turn is suboptimal
|
||||
# ...
|
||||
# # turns + 1 if the final state is still winning
|
||||
def check_game(game_id: int) -> Tuple[int, hanab_game.GameState]:
|
||||
def check_game(game_id: int) -> Tuple[int, GameState]:
|
||||
logger.debug("Analysing game {}".format(game_id))
|
||||
with database.conn.cursor() as cur:
|
||||
cur.execute("SELECT games.num_players, score, games.variant_id, starting_player FROM games "
|
||||
with conn.cursor() as cur:
|
||||
cur.execute("SELECT games.num_players, deck, actions, score, games.variant_id FROM games "
|
||||
"INNER JOIN seeds ON seeds.seed = games.seed "
|
||||
"WHERE games.id = (%s)",
|
||||
(game_id,)
|
||||
)
|
||||
res = cur.fetchone()
|
||||
if res is None:
|
||||
raise ValueError("No game associated with id {} in database.".format(game_id))
|
||||
(num_players, score, variant_id, starting_player) = res
|
||||
instance, actions = games_db_interface.load_game_parts(game_id)
|
||||
(num_players, compressed_deck, compressed_actions, score, variant_id) = res
|
||||
deck = decompress_deck(compressed_deck)
|
||||
actions = decompress_actions(compressed_actions)
|
||||
|
||||
instance = HanabLiveInstance(deck, num_players, variant_id=variant_id)
|
||||
|
||||
# check if the instance is already won
|
||||
if instance.max_score == score:
|
||||
game = hanab_live.HanabLiveGameState(instance)
|
||||
game = HanabLiveGameState(instance)
|
||||
for action in actions:
|
||||
game.make_action(action)
|
||||
# instance has been won, nothing to compute here
|
||||
return len(actions) + 1, game
|
||||
|
||||
# first, check if the instance itself is feasible:
|
||||
game = hanab_live.HanabLiveGameState(instance)
|
||||
solvable, solution = sat.solve_sat(game)
|
||||
if not solvable:
|
||||
return 0, solution
|
||||
logger.verbose("Instance {} is feasible after 0 turns: {}".format(game_id, compress.link(solution)))
|
||||
|
||||
|
||||
# store lower and upper bounds of numbers of turns after which we know the game was feasible / infeasible
|
||||
solvable_turn = 0
|
||||
unsolvable_turn = len(actions)
|
||||
|
||||
# first, check if the instance itself is feasible:
|
||||
game = HanabLiveGameState(instance)
|
||||
solvable, solution = solve_sat(game)
|
||||
if not solvable:
|
||||
logger.debug("Returning: Instance {} is not feasible.")
|
||||
return 0, solution
|
||||
logger.verbose("Instance {} is feasible after 0 turns: {}".format(game_id, link(solution)))
|
||||
|
||||
while unsolvable_turn - solvable_turn > 1:
|
||||
try_turn = (unsolvable_turn + solvable_turn) // 2
|
||||
try_game = copy.deepcopy(game)
|
||||
assert len(try_game.actions) == solvable_turn
|
||||
assert(len(try_game.actions) == solvable_turn)
|
||||
for a in range(solvable_turn, try_turn):
|
||||
try_game.make_action(actions[a])
|
||||
logger.debug("Checking if instance {} is feasible after {} turns.".format(game_id, try_turn))
|
||||
solvable, potential_sol = sat.solve_sat(try_game)
|
||||
solvable, potential_sol = solve_sat(try_game)
|
||||
if solvable:
|
||||
solution = potential_sol
|
||||
game = try_game
|
||||
solvable_turn = try_turn
|
||||
logger.verbose("Instance {} is feasible after {} turns: {}#{}"
|
||||
.format(game_id, solvable_turn, compress.link(solution), solvable_turn + 1))
|
||||
.format(game_id, solvable_turn, link(solution), solvable_turn + 1))
|
||||
else:
|
||||
unsolvable_turn = try_turn
|
||||
logger.verbose("Instance {} is not feasible after {} turns.".format(game_id, unsolvable_turn))
|
||||
|
||||
assert unsolvable_turn - 1 == solvable_turn
|
||||
assert unsolvable_turn - 1 == solvable_turn, "Programming error"
|
||||
return unsolvable_turn, solution
|
250
compress.py
Executable file
250
compress.py
Executable file
|
@ -0,0 +1,250 @@
|
|||
#! /bin/python3
|
||||
import json
|
||||
import sys
|
||||
import more_itertools
|
||||
|
||||
from enum import Enum
|
||||
from termcolor import colored
|
||||
from typing import List, Optional, Union
|
||||
|
||||
from variants import variant_id, variant_name
|
||||
from hanabi import DeckCard, ActionType, Action, GameState, HanabiInstance
|
||||
from hanab_live import HanabLiveGameState, HanabLiveInstance
|
||||
|
||||
|
||||
# use same BASE62 as on hanab.live to encode decks
|
||||
BASE62 = "abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
|
||||
|
||||
|
||||
# Helper method, iterate over chunks of length n in a string
|
||||
def chunks(s: str, n: int):
|
||||
for i in range(0, len(s), n):
|
||||
yield s[i:i+n]
|
||||
|
||||
|
||||
# exception thrown by decompression methods if parsing fails
|
||||
class InvalidFormatError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
def compress_actions(actions: List[Action], game_id=None) -> str:
|
||||
minType = 0
|
||||
maxType = 0
|
||||
if len(actions) != 0:
|
||||
minType = min(map(lambda a: a.type.value, actions))
|
||||
maxType = max(map(lambda a: a.type.value, actions))
|
||||
typeRange = maxType - minType + 1
|
||||
|
||||
def compress_action(action):
|
||||
## We encode action values with +1 to differentiate
|
||||
# null (encoded 0) and 0 (encoded 1)
|
||||
value = 0 if action.value is None else action.value + 1
|
||||
if action.type == ActionType.VoteTerminate:
|
||||
# This is currently a hack, the actual format has a 10 here
|
||||
# but we cannot encode this
|
||||
value = 0
|
||||
try:
|
||||
a = BASE62[typeRange * value + (action.type.value - minType)]
|
||||
b = BASE62[action.target]
|
||||
except IndexError as e:
|
||||
raise ValueError("Encoding action failed, value too large, found {}".format(value)) from e
|
||||
return a + b
|
||||
|
||||
return "{}{}{}".format(
|
||||
minType,
|
||||
maxType,
|
||||
''.join(map(compress_action, actions))
|
||||
)
|
||||
|
||||
|
||||
def decompress_actions(actions_str: str) -> List[Action]:
|
||||
if not len(actions_str) >= 2:
|
||||
raise InvalidFormatError("min/max range not specified, found: {}".format(actions_str))
|
||||
try:
|
||||
minType = int(actions_str[0])
|
||||
maxType = int(actions_str[1])
|
||||
except ValueError as e:
|
||||
raise InvalidFormatError(
|
||||
"min/max range of actions not specified, expected two integers, found {}".format(actions_str[:2])
|
||||
) from e
|
||||
if not minType <= maxType:
|
||||
raise InvalidFormatError("min/max range illegal, found [{},{}]".format(minType, maxType))
|
||||
typeRange = maxType - minType + 1
|
||||
|
||||
if not len(actions_str) % 2 == 0:
|
||||
raise InvalidFormatError("Invalid action string length: Expected even number of characters")
|
||||
|
||||
for (index, char) in enumerate(actions_str[2:]):
|
||||
if not char in BASE62:
|
||||
raise InvalidFormatError(
|
||||
"Invalid character at index {}: Found {}, expected one of {}".format(
|
||||
index, char, BASE62
|
||||
)
|
||||
)
|
||||
|
||||
def decompress_action(index, action):
|
||||
try:
|
||||
action_type_value = (BASE62.index(action[0]) % typeRange) + minType
|
||||
action_type = ActionType(action_type_value)
|
||||
except ValueError as e:
|
||||
raise InvalidFormatError(
|
||||
"Invalid action type at action {}: Found {}, expected one of {}".format(
|
||||
index, action_type_value,
|
||||
[action_type.value for action_type in ActionType]
|
||||
)
|
||||
) from e
|
||||
## We encode values with +1 to differentiate null (encoded 0) and 0 (encoded 1)
|
||||
value = BASE62.index(action[0]) // typeRange - 1
|
||||
if value == -1:
|
||||
value = None
|
||||
if action_type in [ActionType.Play, ActionType.Discard]:
|
||||
if value is not None:
|
||||
raise InvalidFormatError(
|
||||
"Invalid action value: Action at action index {} is Play/Discard, expected value None, found: {}".format(index, value)
|
||||
)
|
||||
target = BASE62.index(action[1])
|
||||
return Action(action_type, target, value)
|
||||
|
||||
return [decompress_action(idx, a) for (idx, a) in enumerate(chunks(actions_str[2:], 2))]
|
||||
|
||||
|
||||
def compress_deck(deck: List[DeckCard]) -> str:
|
||||
assert(len(deck) != 0)
|
||||
minRank = min(map(lambda c: c.rank, deck))
|
||||
maxRank = max(map(lambda c: c.rank, deck))
|
||||
rankRange = maxRank - minRank + 1
|
||||
|
||||
def compress_card(card):
|
||||
try:
|
||||
return BASE62[rankRange * card.suitIndex + (card.rank - minRank)]
|
||||
except IndexError as e:
|
||||
raise InvalidFormatError(
|
||||
"Could not compress card, suit or rank too large. Found: {}".format(card)
|
||||
) from e
|
||||
return "{}{}{}".format(
|
||||
minRank,
|
||||
maxRank,
|
||||
''.join(map(compress_card, deck))
|
||||
)
|
||||
|
||||
|
||||
def decompress_deck(deck_str: str) -> List[DeckCard]:
|
||||
if len(deck_str) < 2:
|
||||
raise InvalidFormatError("min/max rank range not specified, found: {}".format(deck_str))
|
||||
try:
|
||||
minRank = int(deck_str[0])
|
||||
maxRank = int(deck_str[1])
|
||||
except ValueError as e:
|
||||
raise InvalidFormatError(
|
||||
"min/max rank range not specified, expected two integers, found {}".format(deck_str[:2])
|
||||
) from e
|
||||
if not maxRank >= minRank:
|
||||
raise InvalidFormatError(
|
||||
"Invalid rank range, found [{},{}]".format(minRank, maxRank)
|
||||
)
|
||||
rankRange = maxRank - minRank + 1
|
||||
|
||||
for (index, char) in enumerate(deck_str[2:]):
|
||||
if not char in BASE62:
|
||||
raise InvalidFormatError(
|
||||
"Invalid character at index {}: Found {}, expected one of {}".format(
|
||||
index, char, BASE62
|
||||
)
|
||||
)
|
||||
|
||||
def decompress_card(card_char):
|
||||
index = BASE62.index(card_char)
|
||||
suitIndex = index // rankRange
|
||||
rank = index % rankRange + minRank
|
||||
return DeckCard(suitIndex, rank)
|
||||
|
||||
return [decompress_card(c) for c in deck_str[2:]]
|
||||
|
||||
|
||||
# compresses a standard GameState object into hanab.live format
|
||||
# which can be used in json replay links
|
||||
# The GameState object has to be standard / fitting hanab.live variants,
|
||||
# otherwise compression is not possible
|
||||
def compress_game_state(state: Union[GameState, HanabLiveGameState]) -> str:
|
||||
var_id = -1
|
||||
if isinstance(state, HanabLiveGameState):
|
||||
var_id = state.instance.variant_id
|
||||
else:
|
||||
assert isinstance(state, GameState)
|
||||
var_id = HanabLiveInstance.select_standard_variant_id(state.instance)
|
||||
out = "{}{},{},{}".format(
|
||||
state.instance.num_players,
|
||||
compress_deck(state.instance.deck),
|
||||
compress_actions(state.actions),
|
||||
var_id
|
||||
)
|
||||
with_dashes = ''.join(more_itertools.intersperse("-", out, 20))
|
||||
return with_dashes
|
||||
|
||||
|
||||
def decompress_game_state(game_str: str) -> GameState:
|
||||
game_str = game_str.replace("-", "")
|
||||
parts = game_str.split(",")
|
||||
if not len(parts) == 3:
|
||||
raise InvalidFormatError(
|
||||
"Expected 3 comma-separated parts of game, found {}".format(
|
||||
len(parts)
|
||||
)
|
||||
)
|
||||
[players_deck, actions, variant_id] = parts
|
||||
if len(players_deck) == 0:
|
||||
raise InvalidFormatError("Expected nonempty first part")
|
||||
try:
|
||||
num_players = int(players_deck[0])
|
||||
except ValueError as e:
|
||||
raise InvalidFormatError(
|
||||
"Expected number of players, found: {}".format(players_deck[0])
|
||||
) from e
|
||||
|
||||
try:
|
||||
deck = decompress_deck(players_deck[1:])
|
||||
except InvalidFormatError as e:
|
||||
raise InvalidFormatError("Error while parsing deck") from e
|
||||
|
||||
try:
|
||||
actions = decompress_actions(actions)
|
||||
except InvalidFormatError as e:
|
||||
raise InvalidFormatError("Error while parsing actions") from e
|
||||
|
||||
try:
|
||||
variant_id = int(variant_id)
|
||||
except ValueError:
|
||||
raise ValueError("Expected variant id, found: {}".format(variant_id))
|
||||
|
||||
instance = HanabiInstance(deck, num_players)
|
||||
game = GameState(instance)
|
||||
|
||||
# TODO: game is not in consistent state
|
||||
game.actions = actions
|
||||
return game
|
||||
|
||||
|
||||
def link(game_state: GameState) -> str:
|
||||
compressed = compress_game_state(game_state)
|
||||
return "https://hanab.live/shared-replay-json/{}".format(compressed)
|
||||
|
||||
|
||||
# add link method to GameState class
|
||||
GameState.link = link
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
for arg in sys.argv[1:]:
|
||||
deck = decompress_deck(arg)
|
||||
c = compress_deck(deck)
|
||||
assert(c == arg)
|
||||
print(deck)
|
||||
|
||||
inst = HanabiInstance(deck, 5, variant_id = 32)
|
||||
game = GameState(inst)
|
||||
game.play(1)
|
||||
game.play(5)
|
||||
game.clue()
|
||||
print(game.link())
|
||||
|
|
@ -1,6 +1,5 @@
|
|||
# constants.py
|
||||
|
||||
APP_NAME = 'hanabi-suite'
|
||||
|
||||
# some values shared by all (default) hanabi instances
|
||||
HAND_SIZES = {2: 5, 3: 5, 4: 4, 5: 4, 6: 3}
|
||||
|
@ -8,14 +7,10 @@ NUM_STRIKES = 3
|
|||
COLOR_INITIALS = 'rygbpt'
|
||||
PLAYER_NAMES = ["Alice", "Bob", "Cathy", "Donald", "Emily", "Frank"]
|
||||
|
||||
# DB connection parameters
|
||||
DEFAULT_DB_NAME = 'hanab-live'
|
||||
DEFAULT_DB_USER = 'hanabi'
|
||||
|
||||
#### hanab.live stuff
|
||||
|
||||
# hanab.live stuff
|
||||
|
||||
# id of no variant
|
||||
# Id of no variant
|
||||
NO_VARIANT_ID = 0
|
||||
|
||||
# a map (num_suits, num_dark_suits) -> variant id of a variant on hanab.live fitting that distribution
|
1
database/__init__.py
Normal file
1
database/__init__.py
Normal file
|
@ -0,0 +1 @@
|
|||
from .database import cur, conn
|
79
database/database.py
Normal file
79
database/database.py
Normal file
|
@ -0,0 +1,79 @@
|
|||
import psycopg2
|
||||
from typing import Optional, Dict
|
||||
|
||||
# global connection
|
||||
conn = psycopg2.connect("dbname=hanab-live-2 user=postgres")
|
||||
|
||||
# cursor
|
||||
cur = conn.cursor()
|
||||
|
||||
|
||||
# init_database_tables()
|
||||
# populate_static_tables()
|
||||
|
||||
|
||||
class Game():
|
||||
def __init__(self, info=None):
|
||||
self.id = -1
|
||||
self.num_players = -1
|
||||
self.score = -1
|
||||
self.seed = ""
|
||||
self.variant_id = -1
|
||||
self.deck_plays = None
|
||||
self.one_extra_card = None
|
||||
self.one_less_card = None
|
||||
self.all_or_nothing = None
|
||||
self.num_turns = None
|
||||
if type(info) == dict:
|
||||
self.__dict__.update(info)
|
||||
|
||||
@staticmethod
|
||||
def from_tuple(t):
|
||||
g = Game()
|
||||
g.id = t[0]
|
||||
g.num_players = t[1]
|
||||
g.score = t[2]
|
||||
g.seed = t[3]
|
||||
g.variant_id = t[4]
|
||||
g.deck_plays = t[5]
|
||||
g.one_extra_card = t[6]
|
||||
g.one_less_card = t[7]
|
||||
g.all_or_nothing = t[8]
|
||||
g.num_turns = t[9]
|
||||
return g
|
||||
|
||||
def __eq__(self, other):
|
||||
return self.__dict__ == other.__dict__
|
||||
|
||||
|
||||
def load(game_id: int) -> Optional[Game]:
|
||||
cur.execute("SELECT * from games WHERE id = {};".format(game_id))
|
||||
a = cur.fetchone()
|
||||
if a is None:
|
||||
return None
|
||||
else:
|
||||
return Game.from_tuple(a)
|
||||
|
||||
|
||||
def store(game: Game):
|
||||
stored = load(game.id)
|
||||
if stored is None:
|
||||
# print("inserting game with id {} into DB".format(game.id))
|
||||
cur.execute(
|
||||
"INSERT INTO games"
|
||||
"(id, num_players, score, seed, variant_id)"
|
||||
"VALUES"
|
||||
"(%s, %s, %s, %s, %s);",
|
||||
(game.id, game.num_players, game.score, game.seed, game.variant_id)
|
||||
)
|
||||
print("Inserted game with id {}".format(game.id))
|
||||
else:
|
||||
pass
|
||||
# if not stored == game:
|
||||
# print("Already stored game with id {}, aborting".format(game.id))
|
||||
# print("Stored game is: {}".format(stored.__dict__))
|
||||
# print("New game is: {}".format(game.__dict__))
|
||||
|
||||
|
||||
def commit():
|
||||
conn.commit()
|
30
database/games_seeds_schema.sql
Normal file
30
database/games_seeds_schema.sql
Normal file
|
@ -0,0 +1,30 @@
|
|||
DROP TABLE IF EXISTS seeds CASCADE;
|
||||
CREATE TABLE seeds (
|
||||
seed TEXT NOT NULL PRIMARY KEY,
|
||||
num_players SMALLINT NOT NULL,
|
||||
variant_id SMALLINT NOT NULL,
|
||||
deck VARCHAR(62) NOT NULL,
|
||||
feasible BOOLEAN DEFAULT NULL,
|
||||
max_score_theoretical SMALLINT
|
||||
);
|
||||
CREATE INDEX seeds_variant_idx ON seeds (variant_id);
|
||||
|
||||
|
||||
DROP TABLE IF EXISTS games CASCADE;
|
||||
CREATE TABLE games (
|
||||
id INT PRIMARY KEY,
|
||||
seed TEXT NOT NULL REFERENCES seeds,
|
||||
num_players SMALLINT NOT NULL,
|
||||
starting_player SMALLINT NOT NULL DEFAULT 0,
|
||||
score SMALLINT NOT NULL,
|
||||
variant_id SMALLINT NOT NULL,
|
||||
deck_plays BOOLEAN,
|
||||
one_extra_card BOOLEAN,
|
||||
one_less_card BOOLEAN,
|
||||
all_or_nothing BOOLEAN,
|
||||
num_turns SMALLINT,
|
||||
actions TEXT
|
||||
);
|
||||
CREATE INDEX games_seed_score_idx ON games (seed, score);
|
||||
CREATE INDEX games_var_seed_idx ON games (variant_id, seed);
|
||||
CREATE INDEX games_player_idx ON games (num_players);
|
|
@ -1,31 +1,9 @@
|
|||
import json
|
||||
import requests
|
||||
from pathlib import Path
|
||||
from log_setup import logger
|
||||
|
||||
import platformdirs
|
||||
|
||||
from hanabi import logger
|
||||
from hanabi import constants
|
||||
from hanabi.database import cur, conn
|
||||
|
||||
|
||||
def get_existing_tables():
|
||||
cur.execute(
|
||||
" SELECT tablename FROM pg_tables"
|
||||
" WHERE"
|
||||
" schemaname = 'public' AND "
|
||||
" tablename IN ("
|
||||
" 'seeds',"
|
||||
" 'games',"
|
||||
" 'suits',"
|
||||
" 'colors',"
|
||||
" 'suit_colors',"
|
||||
" 'variants',"
|
||||
" 'variant_suits',"
|
||||
" 'variant_game_downloads'"
|
||||
" )"
|
||||
)
|
||||
return [table for (table,) in cur.fetchall()]
|
||||
from .database import cur, conn
|
||||
|
||||
|
||||
def init_database_tables():
|
||||
|
@ -192,21 +170,15 @@ def _populate_variants(variants):
|
|||
|
||||
def _download_json_files():
|
||||
logger.verbose("Downloading JSON files for suits and variants from github...")
|
||||
base_url = "https://raw.githubusercontent.com/Hanabi-Live/hanabi-live/main/packages/game/src/json"
|
||||
cache_dir = Path(platformdirs.user_cache_dir(constants.APP_NAME))
|
||||
cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
base_url = "https://raw.githubusercontent.com/Hanabi-Live/hanabi-live/main/packages/data/src/json"
|
||||
data = {}
|
||||
for name in ["suits", "variants"]:
|
||||
file = (cache_dir / name).with_suffix(".json")
|
||||
if file.exists():
|
||||
data[name] = json.loads(file.read_text())
|
||||
continue
|
||||
url = base_url + "/" + file.name
|
||||
filename = name + '.json'
|
||||
url = base_url + "/" + filename
|
||||
response = requests.get(url)
|
||||
if not response.status_code == 200:
|
||||
err_msg = "Could not download initialization file {} from github (tried url {})".format(file.name, url)
|
||||
err_msg = "Could not download initialization file {} from github (tried url {})".format(filename, url)
|
||||
logger.error(err_msg)
|
||||
raise RuntimeError(err_msg)
|
||||
file.write_text(response.text)
|
||||
data[name] = json.loads(response.text)
|
||||
return data['suits'], data['variants']
|
||||
return data['suits'], data['variants']
|
|
@ -1,6 +1,6 @@
|
|||
/* Database schema for the tables storing information on available hanab.live variants, suits and colors */
|
||||
|
||||
/* Available suits. The associated id is arbitrary upon initial generation, but fixed afterwards for identification */
|
||||
/* Available suits. The associated id is arbitrary upon initial generation, but fixed for referentiability */
|
||||
DROP TABLE IF EXISTS suits CASCADE;
|
||||
CREATE TABLE suits (
|
||||
id SERIAL PRIMARY KEY,
|
||||
|
@ -27,7 +27,7 @@ CREATE TABLE suits (
|
|||
);
|
||||
CREATE INDEX suits_name_idx ON suits (name);
|
||||
|
||||
/* Available color clues. The indexing is arbitrary upon initial generation, but fixed afterwards for identification */
|
||||
/* Available color clues. The indexing is arbitrary upon initial generation, but fixed for referentiability */
|
||||
DROP TABLE IF EXISTS colors CASCADE;
|
||||
CREATE TABLE colors (
|
||||
id SERIAL PRIMARY KEY,
|
||||
|
@ -99,7 +99,7 @@ CREATE TABLE variants (
|
|||
*/
|
||||
special_rank_ranks SMALLINT NOT NULL DEFAULT 1,
|
||||
/**
|
||||
Encodes how cards of the special rank (if present) are touched by colors,
|
||||
Encodes how cards of the special rank (if present) are touched by colorss,
|
||||
in the same manner how we encoded in @table suits
|
||||
*/
|
||||
special_rank_colors SMALLINT NOT NULL DEFAULT 1,
|
220
deck_analyzer.py
Normal file
220
deck_analyzer.py
Normal file
|
@ -0,0 +1,220 @@
|
|||
from compress import DeckCard
|
||||
from typing import List
|
||||
from enum import Enum
|
||||
|
||||
from database import conn
|
||||
from hanabi import HanabiInstance, pp_deck
|
||||
from compress import decompress_deck
|
||||
import constants
|
||||
|
||||
|
||||
class InfeasibilityType(Enum):
|
||||
OutOfPace = 0 # idx denotes index of last card drawn before being forced to reduce pace, value denotes how bad pace is
|
||||
OutOfHandSize = 1 # idx denotes index of last card drawn before being forced to discard a crit
|
||||
NotTrivial = 2
|
||||
CritAtBottom = 3
|
||||
|
||||
|
||||
class InfeasibilityReason():
|
||||
def __init__(self, infeasibility_type, idx, value=None):
|
||||
self.type = infeasibility_type
|
||||
self.index = idx
|
||||
self.value = value
|
||||
|
||||
def __repr__(self):
|
||||
match self.type:
|
||||
case InfeasibilityType.OutOfPace:
|
||||
return "Deck runs out of pace ({}) after drawing card {}".format(self.value, self.index)
|
||||
case InfeasibilityType.OutOfHandSize:
|
||||
return "Deck runs out of hand size after drawing card {}".format(self.index)
|
||||
case InfeasibilityType.CritAtBottom:
|
||||
return "Deck has crit non-5 at bottom (index {})".format(self.index)
|
||||
|
||||
|
||||
def analyze_suit(occurrences):
|
||||
# denotes the indexes of copies we can use wlog
|
||||
picks = {
|
||||
1: 0,
|
||||
**{ r: None for r in range(2, 5) },
|
||||
5: 0
|
||||
}
|
||||
|
||||
# denotes the intervals when cards will be played wlog
|
||||
play_times = {
|
||||
1: [occurrences[1][0]],
|
||||
**{ r: None for _ in range(instance.num_suits)
|
||||
for r in range(2,6)
|
||||
}
|
||||
}
|
||||
|
||||
print("occurrences are: {}".format(occurrences))
|
||||
|
||||
for rank in range(2, 6):
|
||||
|
||||
# general analysis
|
||||
earliest_play = max(min(play_times[rank - 1]), min(occurrences[rank]))
|
||||
latest_play = max( *play_times[rank - 1], *occurrences[rank])
|
||||
play_times[rank] = [earliest_play, latest_play]
|
||||
|
||||
# check a few extra cases regarding the picks when the rank is not 5
|
||||
if rank != 5:
|
||||
# check if we can just play the first copy
|
||||
if max(play_times[rank - 1]) < min(occurrences[rank]):
|
||||
picks[rank] = 0
|
||||
play_times[rank] = [min(occurrences[rank])]
|
||||
continue
|
||||
|
||||
|
||||
# check if the second copy is not worse than the first when it comes,
|
||||
# because we either have to wait for smaller cards anyway
|
||||
# or the next card is not there anyway
|
||||
if max(occurrences[rank]) < max(earliest_play, min(occurrences[rank + 1])):
|
||||
picks[rank] = 1
|
||||
|
||||
|
||||
return picks, play_times
|
||||
|
||||
|
||||
|
||||
def analyze_card_usage(instance: HanabiInstance):
|
||||
storage_size = instance.num_players * instance.hand_size
|
||||
for suit in range(instance.num_suits):
|
||||
print("analysing suit {}: {}".format(
|
||||
suit,
|
||||
pp_deck((c for c in instance.deck if c.suitIndex == suit))
|
||||
)
|
||||
)
|
||||
|
||||
occurrences = {
|
||||
rank: [max(0, i - storage_size + 1) for (i, card) in enumerate(instance.deck) if card == DeckCard(suit, rank)]
|
||||
for rank in range(1,6)
|
||||
}
|
||||
|
||||
picks, play_times = analyze_suit(occurrences)
|
||||
|
||||
print("did analysis:")
|
||||
print("play times: ", play_times)
|
||||
print("picks: ", picks)
|
||||
print()
|
||||
|
||||
|
||||
|
||||
def analyze(instance: HanabiInstance, find_non_trivial=False) -> InfeasibilityReason | None:
|
||||
|
||||
if instance.deck[-1].rank != 5 and instance.deck[-1].suitIndex + instance.num_dark_suits >= instance.num_suits:
|
||||
return InfeasibilityReason(InfeasibilityType.CritAtBottom, instance.deck_size - 1)
|
||||
|
||||
# we will sweep through the deck and pretend that we instantly play all cards
|
||||
# as soon as we have them (and recurse this)
|
||||
# this allows us to detect standard pace issue arguments
|
||||
|
||||
stacks = [0] * instance.num_suits
|
||||
stored_cards = set()
|
||||
stored_crits = set()
|
||||
|
||||
min_forced_pace = 100
|
||||
worst_index = 0
|
||||
|
||||
ret = None
|
||||
|
||||
for (i, card) in enumerate(instance.deck):
|
||||
if card.rank == stacks[card.suitIndex] + 1:
|
||||
# card is playable
|
||||
stacks[card.suitIndex] += 1
|
||||
# check for further playables that we stored
|
||||
for check_rank in range(card.rank + 1, 6):
|
||||
check_card = DeckCard(card.suitIndex, check_rank)
|
||||
if check_card in stored_cards:
|
||||
stacks[card.suitIndex] += 1
|
||||
stored_cards.remove(check_card)
|
||||
if check_card in stored_crits:
|
||||
stored_crits.remove(check_card)
|
||||
else:
|
||||
break
|
||||
elif card.rank <= stacks[card.suitIndex]:
|
||||
pass # card is trash
|
||||
elif card.rank > stacks[card.suitIndex] + 1:
|
||||
# need to store card
|
||||
if card in stored_cards or card.rank == 5:
|
||||
stored_crits.add(card)
|
||||
stored_cards.add(card)
|
||||
|
||||
## check for out of handsize:
|
||||
if len(stored_crits) == instance.num_players * instance.hand_size:
|
||||
return InfeasibilityReason(InfeasibilityType.OutOfHandSize, i)
|
||||
|
||||
if find_non_trivial and len(stored_cards) == instance.num_players * instance.hand_size:
|
||||
ret = InfeasibilityReason(InfeasibilityType.NotTrivial, i)
|
||||
|
||||
# the last - 1 is there because we have to discard 'next', causing a further draw
|
||||
max_remaining_plays = (instance.deck_size - i - 1) + instance.num_players - 1
|
||||
|
||||
needed_plays = 5 * instance.num_suits - sum(stacks)
|
||||
missing = max_remaining_plays - needed_plays
|
||||
if missing < min_forced_pace:
|
||||
# print("update to {}: {}".format(i, missing))
|
||||
min_forced_pace = missing
|
||||
worst_index = i
|
||||
|
||||
# check that we correctly walked through the deck
|
||||
assert(len(stored_cards) == 0)
|
||||
assert(len(stored_crits) == 0)
|
||||
assert(sum(stacks) == 5 * instance.num_suits)
|
||||
|
||||
if min_forced_pace < 0:
|
||||
return InfeasibilityReason(InfeasibilityType.OutOfPace, worst_index, min_forced_pace)
|
||||
elif ret is not None:
|
||||
return ret
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def run_on_database():
|
||||
cur = conn.cursor()
|
||||
cur2 = conn.cursor()
|
||||
for num_p in range(2, 6):
|
||||
cur.execute("SELECT seed, num_players, deck from seeds where variant_id = 0 and num_players = (%s) order by seed asc", (num_p,))
|
||||
res = cur.fetchall()
|
||||
hand = 0
|
||||
pace = 0
|
||||
non_trivial = 0
|
||||
d = None
|
||||
print("Checking {} {}-player seeds from database".format(len(res), num_p))
|
||||
for (seed, num_players, deck) in res:
|
||||
deck = decompress_deck(deck)
|
||||
a = analyze(HanabiInstance(deck, num_players), True)
|
||||
if type(a) == InfeasibilityReason:
|
||||
if a.type == InfeasibilityType.OutOfHandSize:
|
||||
# print("Seed {} infeasible: {}\n{}".format(seed, a, deck))
|
||||
hand += 1
|
||||
elif a.type == InfeasibilityType.OutOfPace:
|
||||
pace += 1
|
||||
elif a.type == InfeasibilityType.NotTrivial:
|
||||
non_trivial += 1
|
||||
d = seed, deck
|
||||
|
||||
print("Found {} seeds running out of hand size, {} running out of pace and {} that are not trivial".format(hand, pace, non_trivial))
|
||||
if d is not None:
|
||||
print("example non-trivial deck (seed {}): [{}]"
|
||||
.format(
|
||||
d[0],
|
||||
", ".join(c.colorize() for c in d[1])
|
||||
)
|
||||
)
|
||||
print()
|
||||
# if p < 0:
|
||||
# print("seed {} ({} players) runs out of pace ({}) after drawing {}: {}:\n{}".format(seed, num_players, p, i, deck[i], deck))
|
||||
# cur.execute("UPDATE seeds SET feasible = f WHERE seed = (%s)", seed)
|
||||
|
||||
if __name__ == "__main__":
|
||||
# print(deck)
|
||||
# a = analyze(deck, 4)
|
||||
# print(a)
|
||||
# run_on_database()
|
||||
deck_str = "15bcfwnqsdmbnfuvhskrgfixwckklojxgemrhpqppuaaiyadultv"
|
||||
deck_str = "15misofrmvvuxujkphaqpcflegysdwqaakcilbxtuhwfrbgdnpkn"
|
||||
deck_str = "15wqpvhdkufjcrewyxulvarhgolkixmfgmndbpstqbupcanfisak"
|
||||
deck = decompress_deck(deck_str)
|
||||
print(pp_deck(deck))
|
||||
instance = HanabiInstance(deck, 2)
|
||||
analyze_card_usage(instance)
|
190
download_data.py
Normal file
190
download_data.py
Normal file
|
@ -0,0 +1,190 @@
|
|||
import alive_progress
|
||||
from typing import Dict, Optional
|
||||
|
||||
import psycopg2.errors
|
||||
|
||||
from site_api import get, api, replay
|
||||
from database.database import Game, store, load, commit, conn, cur
|
||||
from compress import compress_deck, compress_actions, DeckCard, Action, InvalidFormatError
|
||||
from variants import variant_id, variant_name
|
||||
from hanab_live import HanabLiveInstance, HanabLiveGameState
|
||||
|
||||
from log_setup import logger
|
||||
|
||||
|
||||
#
|
||||
def detailed_export_game(game_id: int, score: Optional[int] = None, var_id: Optional[int] = None,
|
||||
seed_exists: bool = False) -> None:
|
||||
"""
|
||||
Downloads full details of game, inserts seed and game into DB
|
||||
If seed is already present, it is left as is
|
||||
If game is already present, game details will be updated
|
||||
|
||||
:param game_id:
|
||||
:param score: If given, this will be inserted as score of the game. If not given, score is calculated
|
||||
:param var_id If given, this will be inserted as variant id of the game. If not given, this is looked up
|
||||
:param seed_exists: If specified and true, assumes that the seed is already present in database.
|
||||
If this is not the case, call will raise a DB insertion error
|
||||
"""
|
||||
logger.debug("Importing game {}".format(game_id))
|
||||
|
||||
assert_msg = "Invalid response format from hanab.live while exporting game id {}".format(game_id)
|
||||
|
||||
game_json = get("export/{}".format(game_id))
|
||||
assert game_json.get('id') == game_id, assert_msg + ": " + str(game_json)
|
||||
|
||||
players = game_json.get('players', [])
|
||||
num_players = len(players)
|
||||
seed = game_json.get('seed', None)
|
||||
options = game_json.get('options', {})
|
||||
var_id = var_id or variant_id(options.get('variant', 'No Variant'))
|
||||
deck_plays = options.get('deckPlays', False)
|
||||
one_extra_card = options.get('oneExtraCard', False)
|
||||
one_less_card = options.get('oneLessCard', False)
|
||||
all_or_nothing = options.get('allOrNothing', False)
|
||||
starting_player = options.get('startingPlayer', 0)
|
||||
actions = [Action.from_json(action) for action in game_json.get('actions', [])]
|
||||
deck = [DeckCard.from_json(card) for card in game_json.get('deck', None)]
|
||||
|
||||
assert players != [], assert_msg
|
||||
assert seed is not None, assert_msg
|
||||
|
||||
if score is None:
|
||||
# need to play through the game once to find out its score
|
||||
game = HanabLiveGameState(
|
||||
HanabLiveInstance(
|
||||
deck, num_players, var_id,
|
||||
deck_plays=deck_plays,
|
||||
one_less_card=one_less_card,
|
||||
one_extra_card=one_extra_card,
|
||||
all_or_nothing=all_or_nothing
|
||||
),
|
||||
starting_player
|
||||
)
|
||||
print(game.instance.hand_size, game.instance.num_players)
|
||||
for action in actions:
|
||||
game.make_action(action)
|
||||
score = game.score
|
||||
|
||||
try:
|
||||
compressed_deck = compress_deck(deck)
|
||||
except InvalidFormatError:
|
||||
logger.error("Failed to compress deck while exporting game {}: {}".format(game_id, deck))
|
||||
raise
|
||||
try:
|
||||
compressed_actions = compress_actions(actions)
|
||||
except InvalidFormatError:
|
||||
logger.error("Failed to compress actions while exporting game {}".format(game_id))
|
||||
raise
|
||||
|
||||
if not seed_exists:
|
||||
cur.execute(
|
||||
"INSERT INTO seeds (seed, num_players, variant_id, deck)"
|
||||
"VALUES (%s, %s, %s, %s)"
|
||||
"ON CONFLICT (seed) DO NOTHING",
|
||||
(seed, num_players, var_id, compressed_deck)
|
||||
)
|
||||
logger.debug("New seed {} imported.".format(seed))
|
||||
|
||||
cur.execute(
|
||||
"INSERT INTO games ("
|
||||
"id, num_players, starting_player, score, seed, variant_id, deck_plays, one_extra_card, one_less_card,"
|
||||
"all_or_nothing, actions"
|
||||
")"
|
||||
"VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"
|
||||
"ON CONFLICT (id) DO UPDATE SET ("
|
||||
"deck_plays, one_extra_card, one_less_card, all_or_nothing, actions"
|
||||
") = ("
|
||||
"EXCLUDED.deck_plays, EXCLUDED.one_extra_card, EXCLUDED.one_less_card, EXCLUDED.all_or_nothing,"
|
||||
"EXCLUDED.actions"
|
||||
")",
|
||||
(
|
||||
game_id, num_players, starting_player, score, seed, var_id, deck_plays, one_extra_card, one_less_card,
|
||||
all_or_nothing, compressed_actions
|
||||
)
|
||||
)
|
||||
logger.debug("Imported game {}".format(game_id))
|
||||
|
||||
|
||||
def process_game_row(game: Dict, var_id):
|
||||
game_id = game.get('id', None)
|
||||
seed = game.get('seed', None)
|
||||
num_players = game.get('num_players', None)
|
||||
score = game.get('score', None)
|
||||
|
||||
if any(v is None for v in [game_id, seed, num_players, score]):
|
||||
raise ValueError("Unknown response format on hanab.live")
|
||||
|
||||
cur.execute("SAVEPOINT seed_insert")
|
||||
try:
|
||||
cur.execute(
|
||||
"INSERT INTO games (id, seed, num_players, score, variant_id)"
|
||||
"VALUES"
|
||||
"(%s, %s ,%s ,%s ,%s)"
|
||||
"ON CONFLICT (id) DO NOTHING",
|
||||
(game_id, seed, num_players, score, var_id)
|
||||
)
|
||||
except psycopg2.errors.ForeignKeyViolation:
|
||||
cur.execute("ROLLBACK TO seed_insert")
|
||||
detailed_export_game(game_id, score, var_id)
|
||||
cur.execute("RELEASE seed_insert")
|
||||
logger.debug("Imported game {}".format(game_id))
|
||||
|
||||
|
||||
def download_games(var_id):
|
||||
name = variant_name(var_id)
|
||||
page_size = 100
|
||||
if name is None:
|
||||
raise ValueError("{} is not a known variant_id.".format(var_id))
|
||||
|
||||
url = "variants/{}".format(var_id)
|
||||
r = api(url, refresh=True)
|
||||
if not r:
|
||||
raise RuntimeError("Failed to download request from hanab.live")
|
||||
|
||||
num_entries = r.get('total_rows', None)
|
||||
if num_entries is None:
|
||||
raise ValueError("Unknown response format on hanab.live")
|
||||
|
||||
cur.execute(
|
||||
"SELECT COUNT(*) FROM games WHERE variant_id = %s AND id <= "
|
||||
"(SELECT COALESCE (last_game_id, 0) FROM variant_game_downloads WHERE variant_id = %s)",
|
||||
(var_id, var_id)
|
||||
)
|
||||
num_already_downloaded_games = cur.fetchone()[0]
|
||||
assert num_already_downloaded_games <= num_entries, "Database inconsistent, too many games present."
|
||||
next_page = num_already_downloaded_games // page_size
|
||||
last_page = (num_entries - 1) // page_size
|
||||
|
||||
if num_already_downloaded_games == num_entries:
|
||||
logger.info("Already downloaded all games ({} many) for variant {} [{}]".format(num_entries, var_id, name))
|
||||
return
|
||||
logger.info(
|
||||
"Downloading remaining {} (total {}) entries for variant {} [{}]".format(
|
||||
num_entries - num_already_downloaded_games, num_entries, var_id, name
|
||||
)
|
||||
)
|
||||
|
||||
with alive_progress.alive_bar(
|
||||
total=num_entries - num_already_downloaded_games,
|
||||
title='Downloading games for variant id {} [{}]'.format(var_id, name),
|
||||
enrich_print=False
|
||||
) as bar:
|
||||
for page in range(next_page, last_page + 1):
|
||||
r = api(url + "?col[0]=0&page={}".format(page), refresh=page == last_page)
|
||||
rows = r.get('rows', [])
|
||||
if page == next_page:
|
||||
rows = rows[num_already_downloaded_games % 100:]
|
||||
if not (page == last_page or len(rows) == page_size):
|
||||
logger.warn('WARN: received unexpected row count ({}) on page {}'.format(len(rows), page))
|
||||
for row in rows:
|
||||
process_game_row(row, var_id)
|
||||
bar()
|
||||
cur.execute(
|
||||
"INSERT INTO variant_game_downloads (variant_id, last_game_id) VALUES"
|
||||
"(%s, %s)"
|
||||
"ON CONFLICT (variant_id) DO UPDATE SET last_game_id = EXCLUDED.last_game_id",
|
||||
(var_id, r['rows'][-1]['id'])
|
||||
)
|
||||
conn.commit()
|
||||
|
|
@ -1,3 +0,0 @@
|
|||
dbname: hanab-live
|
||||
dbuser: hanabi
|
||||
dbpass: null
|
|
@ -1,14 +1,14 @@
|
|||
#! /bin/python3
|
||||
import collections
|
||||
import sys
|
||||
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
from log_setup import logger
|
||||
from typing import Tuple, List, Optional
|
||||
from time import sleep
|
||||
|
||||
from hanabi import logger
|
||||
from hanabi import hanab_game
|
||||
from hanabi.live import compress
|
||||
from hanabi import database
|
||||
from hanabi import DeckCard, Action, ActionType, GameState, HanabiInstance
|
||||
from compress import link, decompress_deck
|
||||
from database.database import conn
|
||||
|
||||
|
||||
class CardType(Enum):
|
||||
|
@ -20,8 +20,8 @@ class CardType(Enum):
|
|||
UniqueVisible = 4
|
||||
|
||||
|
||||
class CardState:
|
||||
def __init__(self, card_type: CardType, card: hanab_game.DeckCard, weight: Optional[int] = 1):
|
||||
class CardState():
|
||||
def __init__(self, card_type: CardType, card: DeckCard, weight=1):
|
||||
self.card_type = card_type
|
||||
self.card = card
|
||||
self.weight = weight
|
||||
|
@ -67,7 +67,7 @@ class WeightedCard:
|
|||
|
||||
|
||||
class HandState:
|
||||
def __init__(self, player: int, game_state: hanab_game.GameState):
|
||||
def __init__(self, player: int, game_state: GameState):
|
||||
self.trash = []
|
||||
self.playable = []
|
||||
self.critical = []
|
||||
|
@ -112,14 +112,14 @@ class HandState:
|
|||
else:
|
||||
assert len(self.critical) > 0, "Programming error."
|
||||
self.best_discard = self.critical[-1]
|
||||
self.discard_badness = 600 - 100 * self.best_discard.card.rank
|
||||
self.discard_badness = 600 - 100*self.best_discard.card.rank
|
||||
|
||||
def num_useful_cards(self):
|
||||
return len(self.dupes) + len(self.uniques) + len(self.playable) + len(self.critical)
|
||||
|
||||
|
||||
class CheatingStrategy:
|
||||
def __init__(self, game_state: hanab_game.GameState):
|
||||
def __init__(self, game_state: GameState):
|
||||
self.game_state = game_state
|
||||
|
||||
def make_move(self):
|
||||
|
@ -136,8 +136,10 @@ class CheatingStrategy:
|
|||
exit(0)
|
||||
|
||||
|
||||
|
||||
|
||||
class GreedyStrategy():
|
||||
def __init__(self, game_state: hanab_game.GameState):
|
||||
def __init__(self, game_state: GameState):
|
||||
self.game_state = game_state
|
||||
|
||||
self.earliest_draw_times = []
|
||||
|
@ -145,7 +147,7 @@ class GreedyStrategy():
|
|||
self.earliest_draw_times.append([])
|
||||
for r in range(1, 6):
|
||||
self.earliest_draw_times[s].append(max(
|
||||
game_state.deck.index(hanab_game.DeckCard(s, r)) - game_state.hand_size * game_state.num_players + 1,
|
||||
game_state.deck.index(DeckCard(s, r)) - game_state.hand_size * game_state.num_players + 1,
|
||||
0 if r == 1 else self.earliest_draw_times[s][r - 2]
|
||||
))
|
||||
|
||||
|
@ -187,7 +189,7 @@ class GreedyStrategy():
|
|||
copy_holders = set(self.game_state.holding_players(state.card))
|
||||
copy_holders.remove(player)
|
||||
connecting_holders = set(
|
||||
self.game_state.holding_players(hanab_game.DeckCard(state.card.suitIndex, state.card.rank + 1)))
|
||||
self.game_state.holding_players(DeckCard(state.card.suitIndex, state.card.rank + 1)))
|
||||
|
||||
if len(copy_holders) == 0:
|
||||
# card is unique, imortancy is based lexicographically on whether somebody has the conn. card and the rank
|
||||
|
@ -243,8 +245,8 @@ class GreedyStrategy():
|
|||
self.game_state.clue()
|
||||
|
||||
|
||||
def run_deck(instance: hanab_game.HanabiInstance) -> hanab_game.GameState:
|
||||
gs = hanab_game.GameState(instance)
|
||||
def run_deck(instance: HanabiInstance) -> GameState:
|
||||
gs = GameState(instance)
|
||||
strat = CheatingStrategy(gs)
|
||||
while not gs.is_over():
|
||||
strat.make_move()
|
||||
|
@ -255,7 +257,7 @@ def run_samples(num_players, sample_size):
|
|||
logger.info("Running {} test games on {} players using greedy strategy.".format(sample_size, num_players))
|
||||
won = 0
|
||||
lost = 0
|
||||
cur = database.conn.cursor()
|
||||
cur = conn.cursor()
|
||||
cur.execute(
|
||||
"SELECT seed, num_players, deck, variant_id "
|
||||
"FROM seeds WHERE variant_id = 0 AND num_players = (%s)"
|
||||
|
@ -263,13 +265,13 @@ def run_samples(num_players, sample_size):
|
|||
(num_players, sample_size))
|
||||
for r in cur:
|
||||
seed, num_players, deck_str, var_id = r
|
||||
deck = compress.decompress_deck(deck_str)
|
||||
instance = hanab_game.HanabiInstance(deck, num_players)
|
||||
deck = decompress_deck(deck_str)
|
||||
instance = HanabiInstance(deck, num_players)
|
||||
final_game_state = run_deck(instance)
|
||||
if final_game_state.score != instance.max_score:
|
||||
logger.verbose(
|
||||
"Greedy strategy lost {}-player seed {:10} {}:\n{}"
|
||||
.format(num_players, seed, str(deck), compress.link(final_game_state))
|
||||
.format(num_players, seed, str(deck), link(final_game_state))
|
||||
)
|
||||
lost += 1
|
||||
else:
|
||||
|
@ -278,3 +280,9 @@ def run_samples(num_players, sample_size):
|
|||
logger.info("Won {} ({}%) and lost {} ({}%) from sample of {} test games using greedy strategy.".format(
|
||||
won, round(100 * won / sample_size, 2), lost, round(100 * lost / sample_size, 2), sample_size
|
||||
))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
for p in range(2, 6):
|
||||
run_samples(p, int(sys.argv[1]))
|
||||
print()
|
81
hanab_live.py
Normal file
81
hanab_live.py
Normal file
|
@ -0,0 +1,81 @@
|
|||
from typing import List, Optional
|
||||
|
||||
import hanabi
|
||||
import constants
|
||||
from variants import Variant
|
||||
|
||||
|
||||
class HanabLiveInstance(hanabi.HanabiInstance):
|
||||
def __init__(
|
||||
self,
|
||||
deck: List[hanabi.DeckCard],
|
||||
num_players: int,
|
||||
variant_id: int,
|
||||
one_extra_card: bool = False,
|
||||
one_less_card: bool = False,
|
||||
*args, **kwargs
|
||||
):
|
||||
assert 2 <= num_players <= 6
|
||||
hand_size = constants.HAND_SIZES[num_players]
|
||||
if one_less_card:
|
||||
hand_size -= 1
|
||||
if one_extra_card:
|
||||
hand_size += 1
|
||||
|
||||
super().__init__(deck, num_players, hand_size=hand_size, *args, **kwargs)
|
||||
self.variant_id = variant_id
|
||||
self.variant = Variant.from_db(self.variant_id)
|
||||
|
||||
@staticmethod
|
||||
def select_standard_variant_id(instance: hanabi.HanabiInstance):
|
||||
err_msg = "Hanabi instance not supported by hanab.live, cannot convert to HanabLiveInstance: "
|
||||
assert 3 <= instance.num_suits <= 6, \
|
||||
err_msg + "Illegal number of suits ({}) found, must be in range [3,6]".format(instance.num_suits)
|
||||
assert 0 <= instance.num_dark_suits <= 2, \
|
||||
err_msg + "Illegal number of dark suits ({}) found, must be in range [0,2]".format(instance.num_dark_suits)
|
||||
assert 4 <= instance.num_suits - instance.num_dark_suits, \
|
||||
err_msg + "Illegal ratio of dark suits to suits, can have at most {} dark suits with {} total suits".format(
|
||||
max(instance.num_suits - 4, 0), instance.num_suits
|
||||
)
|
||||
return constants.VARIANT_IDS_STANDARD_DISTRIBUTIONS[instance.num_suits][instance.num_dark_suits]
|
||||
|
||||
|
||||
class HanabLiveGameState(hanabi.GameState):
|
||||
def __init__(self, instance: HanabLiveInstance, starting_player: int = 0):
|
||||
super().__init__(instance, starting_player)
|
||||
self.instance: HanabLiveInstance = instance
|
||||
|
||||
def make_action(self, action):
|
||||
match action.type:
|
||||
case hanabi.ActionType.ColorClue | hanabi.ActionType.RankClue:
|
||||
assert(self.clues > 0)
|
||||
self.actions.append(action)
|
||||
self.clues -= self.instance.clue_increment
|
||||
self._make_turn()
|
||||
# TODO: could check that the clue specified is in fact legal
|
||||
case hanabi.ActionType.Play:
|
||||
self.play(action.target)
|
||||
case hanabi.ActionType.Discard:
|
||||
self.discard(action.target)
|
||||
case hanabi.ActionType.EndGame | hanabi.ActionType.VoteTerminate:
|
||||
self.over = True
|
||||
|
||||
def _waste_clue(self) -> hanabi.Action:
|
||||
for player in range(self.turn + 1, self.turn + self.num_players):
|
||||
for card in self.hands[player % self.num_players]:
|
||||
for rank in self.instance.variant.ranks:
|
||||
if self.instance.variant.rank_touches(card, rank):
|
||||
return hanabi.Action(
|
||||
hanabi.ActionType.RankClue,
|
||||
player % self.num_players,
|
||||
rank
|
||||
)
|
||||
for color in range(self.instance.variant.num_colors):
|
||||
if self.instance.variant.color_touches(card, color):
|
||||
return hanabi.Action(
|
||||
hanabi.ActionType.ColorClue,
|
||||
player % self.num_players,
|
||||
color
|
||||
)
|
||||
raise RuntimeError("Current game state did not permit any legal clue."
|
||||
"This case is incredibly rare and currently not handled.")
|
|
@ -1,12 +1,8 @@
|
|||
from typing import Optional, List, Generator
|
||||
from typing import Optional, List
|
||||
from enum import Enum
|
||||
from termcolor import colored
|
||||
|
||||
from hanabi import constants
|
||||
|
||||
|
||||
class ParseError(ValueError):
|
||||
pass
|
||||
import constants
|
||||
|
||||
|
||||
class DeckCard:
|
||||
|
@ -17,19 +13,7 @@ class DeckCard:
|
|||
|
||||
@staticmethod
|
||||
def from_json(deck_card):
|
||||
suit_index = deck_card.get('suitIndex', None)
|
||||
rank = deck_card.get('rank', None)
|
||||
if suit_index is None:
|
||||
raise ParseError("No suit index specified in deck_card")
|
||||
if rank is None:
|
||||
raise ParseError("No rank specified in deck_card")
|
||||
return DeckCard(suit_index, rank)
|
||||
|
||||
def to_json(self):
|
||||
return {
|
||||
"suitIndex": self.suitIndex,
|
||||
"rank": self.rank
|
||||
}
|
||||
return DeckCard(**deck_card)
|
||||
|
||||
def colorize(self):
|
||||
color = ["green", "blue", "magenta", "yellow", "white", "cyan"][self.suitIndex]
|
||||
|
@ -39,8 +23,6 @@ class DeckCard:
|
|||
return self.suitIndex == other.suitIndex and self.rank == other.rank
|
||||
|
||||
def __repr__(self):
|
||||
if self.suitIndex == 0 and self.rank == 0:
|
||||
return "kt"
|
||||
return constants.COLOR_INITIALS[self.suitIndex] + str(self.rank)
|
||||
|
||||
def __hash__(self):
|
||||
|
@ -48,7 +30,7 @@ class DeckCard:
|
|||
return 1000 * self.suitIndex + self.rank
|
||||
|
||||
|
||||
def pp_deck(deck: Generator[DeckCard, None, None]) -> str:
|
||||
def pp_deck(deck: List[DeckCard]) -> str:
|
||||
return "[" + ", ".join(card.colorize() for card in deck) + "]"
|
||||
|
||||
|
||||
|
@ -72,33 +54,12 @@ class Action:
|
|||
|
||||
@staticmethod
|
||||
def from_json(action):
|
||||
action_type_int = action.get('type', None)
|
||||
action_target = action.get('target', None)
|
||||
action_value = action.get('value', None)
|
||||
if action_type_int is None:
|
||||
raise ParseError("No action type specified in action, found {}".format(action_type))
|
||||
if action_target is None:
|
||||
raise ParseError("No action target specified in action, found {}".format(action_target))
|
||||
for val in [action_type_int, action_target, action_value]:
|
||||
if val is not None and type(val) != int:
|
||||
raise ParseError("Invalid data type in action, expected int, found {}".format(type(val)))
|
||||
try:
|
||||
action_type = ActionType(action_type_int)
|
||||
except ValueError as e:
|
||||
raise ParseError("Invalid action type, found {}".format(action_type_int)) from e
|
||||
return Action(
|
||||
action_type,
|
||||
action_target,
|
||||
action_value
|
||||
ActionType(action['type']),
|
||||
int(action['target']),
|
||||
action.get('value', None)
|
||||
)
|
||||
|
||||
def to_json(self):
|
||||
return {
|
||||
"type": self.type.value,
|
||||
"target": self.target,
|
||||
"value": self.value
|
||||
}
|
||||
|
||||
def __repr__(self):
|
||||
match self.type:
|
||||
case ActionType.Play:
|
||||
|
@ -120,10 +81,6 @@ class Action:
|
|||
|
||||
|
||||
class HanabiInstance:
|
||||
# TODO Max: Deal with the following variants:
|
||||
# - Critical fours (need to calculate dark suits differently)
|
||||
# - Reversed (need to store information somehow and pass this to the hanabi game class)
|
||||
# - Up or Down (in the long run we also want this, but seems a bit tedious, not needed now)
|
||||
def __init__(
|
||||
self,
|
||||
deck: List[DeckCard],
|
||||
|
@ -135,8 +92,7 @@ class HanabiInstance:
|
|||
clue_starved: bool = False, # if true, discarding and playing fives only gives back half a clue
|
||||
fives_give_clue: bool = True, # if false, then playing a five will not change the clue count
|
||||
deck_plays: bool = False,
|
||||
all_or_nothing: bool = False,
|
||||
starting_player: int = 0 # defines index of player that starts the game
|
||||
all_or_nothing: bool = False
|
||||
):
|
||||
# defining properties
|
||||
self.deck = deck
|
||||
|
@ -148,7 +104,6 @@ class HanabiInstance:
|
|||
self.deck_plays = deck_plays,
|
||||
self.all_or_nothing = all_or_nothing
|
||||
assert not self.all_or_nothing, "All or nothing not implemented"
|
||||
self.starting_player = starting_player
|
||||
|
||||
# normalize deck indices
|
||||
for (idx, card) in enumerate(self.deck):
|
||||
|
@ -189,13 +144,9 @@ class HanabiInstance:
|
|||
def clue_increment(self):
|
||||
return 0.5 if self.clue_starved else 1
|
||||
|
||||
@property
|
||||
def dark_suits(self):
|
||||
return list(range(self.num_suits - self.num_dark_suits, self.num_suits))
|
||||
|
||||
|
||||
class GameState:
|
||||
def __init__(self, instance: HanabiInstance):
|
||||
def __init__(self, instance: HanabiInstance, starting_player: int = 0):
|
||||
# will not be modified
|
||||
self.instance = instance
|
||||
|
||||
|
@ -206,7 +157,7 @@ class GameState:
|
|||
self.stacks = [0 for i in range(0, self.instance.num_suits)]
|
||||
self.strikes = 0
|
||||
self.clues = 8
|
||||
self.turn = self.instance.starting_player
|
||||
self.turn = starting_player
|
||||
self.pace = self.instance.initial_pace
|
||||
self.remaining_extra_turns = self.instance.num_players + 1
|
||||
self.trash = []
|
||||
|
@ -254,21 +205,6 @@ class GameState:
|
|||
self.clues -= 1
|
||||
self._make_turn()
|
||||
|
||||
def make_action(self, action):
|
||||
match action.type:
|
||||
case ActionType.ColorClue | ActionType.RankClue:
|
||||
assert self.clues >= 1
|
||||
self.actions.append(action)
|
||||
self.clues -= 1
|
||||
self._make_turn()
|
||||
# TODO: could check that the clue specified is in fact legal
|
||||
case ActionType.Play:
|
||||
self.play(action.target)
|
||||
case ActionType.Discard:
|
||||
self.discard(action.target)
|
||||
case ActionType.EndGame | ActionType.VoteTerminate:
|
||||
self.over = True
|
||||
|
||||
# Forward some properties of the underlying instance
|
||||
@property
|
||||
def num_players(self):
|
||||
|
@ -294,10 +230,6 @@ class GameState:
|
|||
def deck_size(self):
|
||||
return self.instance.deck_size
|
||||
|
||||
@property
|
||||
def draw_pile_size(self):
|
||||
return self.deck_size - self.progress
|
||||
|
||||
# Properties of GameState
|
||||
|
||||
def is_over(self):
|
||||
|
@ -321,23 +253,6 @@ class GameState:
|
|||
|
||||
# Utilities
|
||||
|
||||
def is_playable(self, card: DeckCard):
|
||||
return self.stacks[card.suitIndex] + 1 == card.rank
|
||||
|
||||
def is_trash(self, card: DeckCard):
|
||||
return self.stacks[card.suitIndex] >= card.rank
|
||||
|
||||
def is_critical(self, card: DeckCard):
|
||||
if card.rank == 5:
|
||||
return True
|
||||
if self.is_trash(card):
|
||||
return False
|
||||
count = 0
|
||||
for hand in self.hands:
|
||||
count += hand.count(card)
|
||||
count += self.deck[self.progress:].count(card)
|
||||
return count == 1
|
||||
|
||||
def holding_players(self, card):
|
||||
for (player, hand) in enumerate(self.hands):
|
||||
if card in hand:
|
||||
|
@ -352,9 +267,9 @@ class GameState:
|
|||
)
|
||||
)
|
||||
return {
|
||||
"deck": [card.to_json() for card in self.instance.deck],
|
||||
"deck": self.instance.deck,
|
||||
"players": self.instance.player_names,
|
||||
"actions": [action.to_json() for action in self.actions],
|
||||
"actions": self.actions,
|
||||
"first_player": 0,
|
||||
"options": {
|
||||
"variant": "No Variant",
|
|
@ -1,10 +0,0 @@
|
|||
#! /usr//bin/env python3
|
||||
|
||||
"""
|
||||
Short executable file to start the command-line-interface for the hanabi package.
|
||||
Note this is not part of the package itself
|
||||
"""
|
||||
|
||||
from hanabi import cli
|
||||
|
||||
cli.hanabi_cli()
|
81
hanabi_suite.py
Executable file
81
hanabi_suite.py
Executable file
|
@ -0,0 +1,81 @@
|
|||
#! /usr/bin/python3
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
|
||||
import verboselogs
|
||||
|
||||
from check_game import check_game
|
||||
from download_data import detailed_export_game
|
||||
from compress import link
|
||||
from log_setup import logger, logger_manager
|
||||
|
||||
"""
|
||||
init db + populate tables
|
||||
download games of variant
|
||||
download single game
|
||||
analyze single game
|
||||
"""
|
||||
|
||||
|
||||
def add_init_subparser(subparsers):
|
||||
parser = subparsers.add_parser(
|
||||
'init',
|
||||
help='Init database tables, retrieve variant and suit information from hanab.live'
|
||||
)
|
||||
|
||||
|
||||
def add_download_subparser(subparsers):
|
||||
parser = subparsers.add_parser('download', help='Download games from hanab.live')
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument('--var', '-v', type=int)
|
||||
group.add_argument('--id', '-i', type=int)
|
||||
|
||||
|
||||
def add_analyze_subparser(subparsers):
|
||||
parser = subparsers.add_parser('analyze', help='Analyze a game and find the last winning state')
|
||||
parser.add_argument('game_id', type=int)
|
||||
parser.add_argument('--download', '-d', help='Download game if not in database', action='store_true')
|
||||
|
||||
|
||||
def analyze_game(game_id: int, download: bool = False):
|
||||
if download:
|
||||
detailed_export_game(game_id)
|
||||
logger.info('Analyzing game {}'.format(game_id))
|
||||
turn, sol = check_game(game_id)
|
||||
if turn == 0:
|
||||
logger.info('Instance is unfeasible')
|
||||
else:
|
||||
logger.info('Game was first lost after {} turns.'.format(turn))
|
||||
logger.info(
|
||||
'A replay achieving perfect score from the previous turn onwards is: {}#{}'
|
||||
.format(link(sol), turn)
|
||||
)
|
||||
|
||||
|
||||
def main_parser() -> argparse.ArgumentParser:
|
||||
parser = argparse.ArgumentParser(
|
||||
prog='hanabi_suite',
|
||||
description='High-level interface for analysis of hanabi instances.'
|
||||
)
|
||||
parser.add_argument('--verbose', '-v', help='Enable verbose logging to console', action='store_true')
|
||||
subparsers = parser.add_subparsers(dest='command', required=True, help='select subcommand')
|
||||
|
||||
add_init_subparser(subparsers)
|
||||
add_analyze_subparser(subparsers)
|
||||
add_download_subparser(subparsers)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = main_parser().parse_args()
|
||||
switcher = {
|
||||
'analyze': analyze_game
|
||||
}
|
||||
if args.verbose:
|
||||
logger_manager.set_console_level(verboselogs.VERBOSE)
|
||||
method_args = dict(vars(args))
|
||||
method_args.pop('command')
|
||||
method_args.pop('verbose')
|
||||
switcher[args.command](**method_args)
|
204
instance_finder.py
Normal file
204
instance_finder.py
Normal file
|
@ -0,0 +1,204 @@
|
|||
from typing import Optional
|
||||
import pebble.concurrent
|
||||
import concurrent.futures
|
||||
|
||||
import traceback
|
||||
|
||||
from sat import solve_sat
|
||||
from database.database import conn, cur
|
||||
from download_data import detailed_export_game
|
||||
from alive_progress import alive_bar
|
||||
from compress import decompress_deck, link
|
||||
from hanabi import HanabiInstance
|
||||
from threading import Lock
|
||||
from time import perf_counter
|
||||
from greedy_solver import GameState, GreedyStrategy
|
||||
from log_setup import logger
|
||||
from deck_analyzer import analyze, InfeasibilityReason
|
||||
from variants import Variant
|
||||
|
||||
MAX_PROCESSES = 6
|
||||
|
||||
|
||||
def update_seeds_db():
|
||||
cur2 = conn.cursor()
|
||||
with conn.cursor() as cur:
|
||||
cur.execute("SELECT num_players, seed, variant_id from games;")
|
||||
for (num_players, seed, variant_id) in cur:
|
||||
cur2.execute("SELECT COUNT(*) from seeds WHERE seed = (%s);", (seed,))
|
||||
if cur2.fetchone()[0] == 0:
|
||||
print("new seed {}".format(seed))
|
||||
cur2.execute("INSERT INTO seeds"
|
||||
"(seed, num_players, variant_id)"
|
||||
"VALUES"
|
||||
"(%s, %s, %s)",
|
||||
(seed, num_players, variant_id)
|
||||
)
|
||||
conn.commit()
|
||||
else:
|
||||
print("seed {} already found in DB".format(seed))
|
||||
|
||||
|
||||
def get_decks_of_seeds():
|
||||
cur2 = conn.cursor()
|
||||
cur.execute("SELECT seed, variant_id FROM seeds WHERE deck is NULL")
|
||||
for (seed, variant_id) in cur:
|
||||
cur2.execute("SELECT id FROM games WHERE seed = (%s) LIMIT 1", (seed,))
|
||||
(game_id,) = cur2.fetchone()
|
||||
logger.verbose("Exporting game {} for seed {}.".format(game_id, seed))
|
||||
detailed_export_game(game_id, var_id=variant_id, seed_exists=True)
|
||||
conn.commit()
|
||||
|
||||
|
||||
def update_trivially_feasible_games(variant_id):
|
||||
variant: Variant = Variant.from_db(variant_id)
|
||||
cur.execute("SELECT seed FROM seeds WHERE variant_id = (%s) AND feasible is null", (variant_id,))
|
||||
seeds = cur.fetchall()
|
||||
print('Checking variant {} (id {}), found {} seeds to check...'.format(variant.name, variant_id, len(seeds)))
|
||||
|
||||
with alive_bar(total=len(seeds), title='{} ({})'.format(variant.name, variant_id)) as bar:
|
||||
for (seed,) in seeds:
|
||||
cur.execute("SELECT id, deck_plays, one_extra_card, one_less_card, all_or_nothing "
|
||||
"FROM games WHERE score = (%s) AND seed = (%s) ORDER BY id;",
|
||||
(variant.max_score, seed)
|
||||
)
|
||||
res = cur.fetchall()
|
||||
logger.debug("Checking seed {}: {:3} results".format(seed, len(res)))
|
||||
for (game_id, a, b, c, d) in res:
|
||||
if None in [a, b, c, d]:
|
||||
logger.debug(' Game {} not found in database, exporting...'.format(game_id))
|
||||
detailed_export_game(game_id, var_id=variant_id)
|
||||
else:
|
||||
logger.debug(' Game {} already in database'.format(game_id, valid))
|
||||
valid = not any([a, b, c, d])
|
||||
if valid:
|
||||
logger.verbose('Seed {:10} (variant {}) found to be feasible via game {:6}'.format(seed, variant_id, game_id))
|
||||
cur.execute("UPDATE seeds SET feasible = (%s) WHERE seed = (%s)", (True, seed))
|
||||
conn.commit()
|
||||
break
|
||||
else:
|
||||
logger.verbose(' Cheaty game found')
|
||||
bar()
|
||||
|
||||
|
||||
def get_decks_for_all_seeds():
|
||||
cur = conn.cursor()
|
||||
cur.execute("SELECT id "
|
||||
"FROM games "
|
||||
" INNER JOIN seeds "
|
||||
" ON seeds.seed = games.seed"
|
||||
" WHERE"
|
||||
" seeds.deck is null"
|
||||
" AND"
|
||||
" games.id = ("
|
||||
" SELECT id FROM games WHERE games.seed = seeds.seed LIMIT 1"
|
||||
" )"
|
||||
)
|
||||
print("Exporting decks for all seeds")
|
||||
res = cur.fetchall()
|
||||
with alive_bar(len(res), title="Exporting decks") as bar:
|
||||
for (game_id,) in res:
|
||||
export_game(game_id)
|
||||
bar()
|
||||
|
||||
|
||||
mutex = Lock()
|
||||
|
||||
|
||||
def solve_instance(instance: HanabiInstance):
|
||||
# first, sanity check on running out of pace
|
||||
result = analyze(instance)
|
||||
if result is not None:
|
||||
assert type(result) == InfeasibilityReason
|
||||
logger.debug("found infeasible deck")
|
||||
return False, None, None
|
||||
for num_remaining_cards in [0, 20]:
|
||||
# logger.info("trying with {} remaining cards".format(num_remaining_cards))
|
||||
game = GameState(instance)
|
||||
strat = GreedyStrategy(game)
|
||||
|
||||
# make a number of greedy moves
|
||||
while not game.is_over() and not game.is_known_lost():
|
||||
if num_remaining_cards != 0 and game.progress == game.deck_size - num_remaining_cards:
|
||||
break # stop solution here
|
||||
strat.make_move()
|
||||
|
||||
# check if we won already
|
||||
if game.is_won():
|
||||
# print("won with greedy strat")
|
||||
return True, game, num_remaining_cards
|
||||
|
||||
# now, apply sat solver
|
||||
if not game.is_over():
|
||||
logger.debug("continuing greedy sol with SAT")
|
||||
solvable, sol = solve_sat(game)
|
||||
if solvable is None:
|
||||
return True, sol, num_remaining_cards
|
||||
logger.debug(
|
||||
"No success with {} remaining cards, reducing number of greedy moves, failed attempt was: {}".format(
|
||||
num_remaining_cards, link(game)))
|
||||
# print("Aborting trying with greedy strat")
|
||||
logger.debug("Starting full SAT solver")
|
||||
game = GameState(instance)
|
||||
a, b = solve_sat(game)
|
||||
return a, b, instance.draw_pile_size
|
||||
|
||||
|
||||
@pebble.concurrent.process(timeout=150)
|
||||
def solve_seed_with_timeout(seed, num_players, deck_compressed, var_name: Optional[str] = None):
|
||||
try:
|
||||
logger.verbose("Starting to solve seed {}".format(seed))
|
||||
deck = decompress_deck(deck_compressed)
|
||||
t0 = perf_counter()
|
||||
solvable, solution, num_remaining_cards = solve_instance(HanabiInstance(deck, num_players))
|
||||
t1 = perf_counter()
|
||||
logger.verbose("Solved instance {} in {} seconds: {}".format(seed, round(t1 - t0, 2), solvable))
|
||||
|
||||
mutex.acquire()
|
||||
if solvable is not None:
|
||||
cur.execute("UPDATE seeds SET feasible = (%s) WHERE seed = (%s)", (solvable, seed))
|
||||
conn.commit()
|
||||
mutex.release()
|
||||
|
||||
if solvable == True:
|
||||
logger.verbose("Success with {} cards left in draw by greedy solver on seed {}: {}\n".format(
|
||||
num_remaining_cards, seed, link(solution))
|
||||
)
|
||||
elif solvable == False:
|
||||
logger.debug("seed {} was not solvable".format(seed))
|
||||
logger.debug('{}-player, seed {:10}, {}\n'.format(num_players, seed, var_name))
|
||||
elif solvable is None:
|
||||
logger.verbose("seed {} skipped".format(seed))
|
||||
else:
|
||||
raise Exception("Programming Error")
|
||||
|
||||
except Exception as e:
|
||||
print("exception in subprocess:")
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
def solve_seed(seed, num_players, deck_compressed, var_name: Optional[str] = None):
|
||||
f = solve_seed_with_timeout(seed, num_players, deck_compressed, var_name)
|
||||
try:
|
||||
return f.result()
|
||||
except TimeoutError:
|
||||
logger.verbose("Solving on seed {} timed out".format(seed))
|
||||
return
|
||||
|
||||
|
||||
def solve_unknown_seeds(variant_id, variant_name: Optional[str] = None):
|
||||
cur.execute("SELECT seed, num_players, deck FROM seeds WHERE variant_id = (%s) AND feasible IS NULL", (variant_id,))
|
||||
res = cur.fetchall()
|
||||
|
||||
# for r in res:
|
||||
# solve_seed(r[0], r[1], r[2], variant_name)
|
||||
|
||||
with concurrent.futures.ProcessPoolExecutor(max_workers=MAX_PROCESSES) as executor:
|
||||
fs = [executor.submit(solve_seed, r[0], r[1], r[2], variant_name) for r in res]
|
||||
with alive_bar(len(res), title='Seed solving on {}'.format(variant_name)) as bar:
|
||||
for f in concurrent.futures.as_completed(fs):
|
||||
bar()
|
||||
|
||||
|
||||
update_trivially_feasible_games(0)
|
||||
solve_unknown_seeds(0, "No Variant")
|
|
@ -1,10 +1,5 @@
|
|||
import logging
|
||||
import os
|
||||
|
||||
import verboselogs
|
||||
import platformdirs
|
||||
|
||||
from hanabi import constants
|
||||
|
||||
|
||||
class LoggerManager:
|
||||
|
@ -29,22 +24,20 @@ class LoggerManager:
|
|||
'%(message)s'
|
||||
)
|
||||
|
||||
|
||||
self.console_handler = logging.StreamHandler()
|
||||
self.console_handler.setLevel(console_level)
|
||||
self.console_handler.setFormatter(self.nothing_formatter)
|
||||
|
||||
log_dir = platformdirs.user_log_dir(constants.APP_NAME)
|
||||
os.makedirs(log_dir, exist_ok=True)
|
||||
|
||||
self.debug_file_handler = logging.FileHandler(log_dir + "/debug_log.txt")
|
||||
self.debug_file_handler = logging.FileHandler("debug_log.txt")
|
||||
self.debug_file_handler.setFormatter(self.file_formatter)
|
||||
self.debug_file_handler.setLevel(logging.DEBUG)
|
||||
|
||||
self.verbose_file_handler = logging.FileHandler(log_dir + "/verbose_log.txt")
|
||||
self.verbose_file_handler = logging.FileHandler("verbose_log.txt")
|
||||
self.verbose_file_handler.setFormatter(self.file_formatter)
|
||||
self.verbose_file_handler.setLevel(verboselogs.VERBOSE)
|
||||
|
||||
self.info_file_handler = logging.FileHandler(log_dir + "/log.txt")
|
||||
self.info_file_handler = logging.FileHandler("log.txt")
|
||||
self.info_file_handler.setFormatter(self.info_file_formatter)
|
||||
self.info_file_handler.setLevel(logging.INFO)
|
||||
|
63
old.py
Normal file
63
old.py
Normal file
|
@ -0,0 +1,63 @@
|
|||
|
||||
def print_suits_and_attrs():
|
||||
with open("variants.json") as f:
|
||||
variants = json.loads(f.read())
|
||||
x = set()
|
||||
c = []
|
||||
for var in variants:
|
||||
for k in var.keys():
|
||||
x.add(k)
|
||||
for s in var['suits']:
|
||||
if s not in c:
|
||||
c.append(s)
|
||||
for y in x:
|
||||
print(y)
|
||||
print()
|
||||
|
||||
for s in c:
|
||||
print(s)
|
||||
|
||||
attributes = {
|
||||
"nativeColors": ["Red"],
|
||||
"ranks": 1, # 0: none, 1: default, 2: all
|
||||
"colors": 1, # 0: none, 1: default, 2: all, 3: prism
|
||||
"dark": False,
|
||||
"reversed": False,
|
||||
"prism": False
|
||||
}
|
||||
|
||||
d = OrderedDict((s, attributes) for s in c)
|
||||
|
||||
if not os.path.isfile("colors.json"):
|
||||
with open("colors.json", "w") as f:
|
||||
f.writelines(json.dumps(d, indent=4, sort_keys=False))
|
||||
|
||||
# need: suit name -> colors
|
||||
|
||||
|
||||
def create_suit_graph():
|
||||
with open("variants.json") as f:
|
||||
variants = json.loads(f.read())
|
||||
G = nx.DiGraph()
|
||||
for var in variants:
|
||||
suits = var['suits']
|
||||
for suit in suits:
|
||||
if suit not in G.nodes:
|
||||
G.add_node(suit)
|
||||
for i in range(0, len(suits) - 1):
|
||||
G.add_edge(suits[i], suits[i + 1], var=var['name'])
|
||||
|
||||
H = nx.DiGraph()
|
||||
try:
|
||||
while True:
|
||||
cycle = nx.find_cycle(G)
|
||||
# J = nx.DiGraph()
|
||||
# J.add_edges_from(cycle)
|
||||
# nx.draw(J, with_labels=True)
|
||||
H.add_edges_from(cycle)
|
||||
G.remove_edges_from(cycle)
|
||||
except nx.NetworkXNoCycle:
|
||||
pass
|
||||
|
||||
nx.draw(H, with_labels=True, font_weight='bold')
|
||||
plt.show()
|
|
@ -1,32 +0,0 @@
|
|||
[project]
|
||||
name = "hanabi"
|
||||
version = "1.1.5"
|
||||
description = "Hanabi interface"
|
||||
readme = "README.md"
|
||||
license = { file = "LICENSE" }
|
||||
keywords = [ "hanabi" ]
|
||||
authors = [
|
||||
{ name = "Maximilian Keßler", email = "git@maximilian-kessler.de" }
|
||||
]
|
||||
dependencies = [
|
||||
"requests",
|
||||
"requests_cache",
|
||||
"pysmt",
|
||||
"termcolor",
|
||||
"more_itertools",
|
||||
"psycopg2",
|
||||
"alive_progress",
|
||||
"argparse",
|
||||
"verboselogs",
|
||||
"pebble",
|
||||
"platformdirs",
|
||||
"PyYAML",
|
||||
"cython==0.29.36"
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
"Homepage" = "https://gitlab.com/kesslermaximilian/hanabi"
|
||||
|
||||
[build-system]
|
||||
requires = ["setuptools>=43.0.0", "wheel"]
|
||||
build-backend = "setuptools.build_meta"
|
|
@ -8,7 +8,3 @@ alive_progress
|
|||
argparse
|
||||
verboselogs
|
||||
pebble
|
||||
platformdirs
|
||||
PyYAML
|
||||
cython==0.29.36
|
||||
unidecode
|
||||
|
|
389
sat.py
Normal file
389
sat.py
Normal file
|
@ -0,0 +1,389 @@
|
|||
import copy
|
||||
from pysmt.shortcuts import Symbol, Bool, Not, Implies, Iff, And, Or, AtMostOne, ExactlyOne, get_model, get_atoms, get_formula_size, get_unsat_core, Equals, GE, NotEquals, Int
|
||||
from pysmt.typing import INT
|
||||
from pysmt.rewritings import conjunctive_partition
|
||||
import json
|
||||
from typing import List, Optional, Tuple
|
||||
from concurrent.futures import ProcessPoolExecutor
|
||||
|
||||
from hanabi import DeckCard, Action, ActionType, GameState, HanabiInstance
|
||||
from compress import link, decompress_deck
|
||||
from greedy_solver import GreedyStrategy
|
||||
from constants import COLOR_INITIALS
|
||||
from log_setup import logger
|
||||
|
||||
|
||||
# literals to model game as sat instance to check for feasibility
|
||||
# variants 'throw it in a hole not handled', 'clue starved' and 'up or down' currently not handled
|
||||
class Literals():
|
||||
# num_suits is total number of suits, i.e. also counts the dark suits
|
||||
# default distribution among all suits is assumed
|
||||
def __init__(self, instance: HanabiInstance):
|
||||
|
||||
# clues[m][i] == "after move m we have i clues", in clue starved, this counts half clues
|
||||
self.clues = {
|
||||
-1: Int(16 if instance.clue_starved else 8) # we have 8 clues after turn
|
||||
, **{
|
||||
m: Symbol('m{}clues'.format(m), INT)
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
self.pace = {
|
||||
-1: Int(instance.initial_pace)
|
||||
, **{
|
||||
m: Symbol('m{}pace'.format(m), INT)
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# strikes[m][i] == "after move m we have at least i strikes"
|
||||
self.strikes = {
|
||||
-1: {i: Bool(i == 0) for i in range(0, instance.num_strikes + 1)} # no strikes when we start
|
||||
, **{
|
||||
m: {
|
||||
0: Bool(True),
|
||||
**{ s: Symbol('m{}strikes{}'.format(m,s)) for s in range(1, instance.num_strikes) },
|
||||
instance.num_strikes: Bool(False) # never so many clues that we lose. Implicitly forbids striking out
|
||||
}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# extraturn[m] = "turn m is a move part of the extra round or a dummy turn"
|
||||
self.extraround = {
|
||||
-1: Bool(False)
|
||||
, **{
|
||||
m: Bool(False) if m < instance.draw_pile_size else Symbol('m{}extra'.format(m)) # it takes at least as many turns as cards in the draw pile to start the extra round
|
||||
for m in range(0, instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# dummyturn[m] = "turn m is a dummy nurn and not actually part of the game"
|
||||
self.dummyturn = {
|
||||
-1: Bool(False)
|
||||
, **{
|
||||
m: Bool(False) if m < instance.draw_pile_size + instance.num_players else Symbol('m{}dummy'.format(m))
|
||||
for m in range(0, instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# draw[m][i] == "at move m we play/discard deck[i]"
|
||||
self.discard = {
|
||||
m: {i: Symbol('m{}discard{}'.format(m, i)) for i in range(instance.deck_size)}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
|
||||
# draw[m][i] == "at move m we draw deck card i"
|
||||
self.draw = {
|
||||
-1: { i: Bool(i == instance.num_dealt_cards - 1) for i in range(instance.num_dealt_cards - 1, instance.deck_size) }
|
||||
, **{
|
||||
m: {
|
||||
instance.num_dealt_cards - 1: Bool(False),
|
||||
**{i: Symbol('m{}draw{}'.format(m, i)) for i in range(instance.num_dealt_cards, instance.deck_size)}
|
||||
}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# strike[m] = "at move m we get a strike"
|
||||
self.strike = {
|
||||
-1: Bool(False)
|
||||
, **{
|
||||
m: Symbol('m{}newstrike'.format(m))
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# progress[m][card = (suitIndex, rank)] == "after move m we have played in suitIndex up to rank"
|
||||
self.progress = {
|
||||
-1: {(s, r): Bool(r == 0) for s in range(0, instance.num_suits) for r in range(0, 6)} # at start, have only played rank zero
|
||||
, **{
|
||||
m: {
|
||||
**{(s, 0): Bool(True) for s in range(0, instance.num_suits)},
|
||||
**{(s, r): Symbol('m{}progress{}{}'.format(m, s, r)) for s in range(0, instance.num_suits) for r in range(1, 6)}
|
||||
}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
## Utility variables
|
||||
|
||||
# discard_any[m] == "at move m we play/discard a card"
|
||||
self.discard_any = { m: Symbol('m{}discard_any'.format(m)) for m in range(instance.max_winning_moves) }
|
||||
|
||||
# draw_any[m] == "at move m we draw a card"
|
||||
self.draw_any = {m: Symbol('m{}draw_any'.format(m)) for m in range(instance.max_winning_moves)}
|
||||
|
||||
# play[m] == "at move m we play a card"
|
||||
self.play = {m: Symbol('m{}play'.format(m)) for m in range(instance.max_winning_moves)}
|
||||
|
||||
# play5[m] == "at move m we play a 5"
|
||||
self.play5 = {m: Symbol('m{}play5'.format(m)) for m in range(instance.max_winning_moves)}
|
||||
|
||||
# incr_clues[m] == "at move m we obtain a clue"
|
||||
self.incr_clues = {m: Symbol('m{}c+'.format(m)) for m in range(instance.max_winning_moves)}
|
||||
|
||||
|
||||
def solve_sat(starting_state: GameState | HanabiInstance, min_pace: Optional[int] = 0) -> Tuple[bool, Optional[GameState]]:
|
||||
if isinstance(starting_state, HanabiInstance):
|
||||
instance = starting_state
|
||||
game_state = GameState(instance)
|
||||
elif isinstance(starting_state, GameState):
|
||||
instance = starting_state.instance
|
||||
game_state = starting_state
|
||||
else:
|
||||
raise ValueError("Bad argument type")
|
||||
|
||||
ls = Literals(instance)
|
||||
|
||||
##### setup of initial game state
|
||||
|
||||
# properties used later to model valid moves
|
||||
|
||||
starting_hands = [[card.deck_index for card in hand] for hand in game_state.hands]
|
||||
first_turn = len(game_state.actions)
|
||||
|
||||
if isinstance(starting_state, GameState):
|
||||
# have to set additional variables
|
||||
|
||||
# set initial clues
|
||||
for i in range(0, 10):
|
||||
ls.clues[first_turn - 1] = Int(game_state.clues)
|
||||
|
||||
# set initial pace
|
||||
ls.pace[first_turn - 1] = Int(game_state.pace)
|
||||
|
||||
# set initial strikes
|
||||
for i in range(0, instance.num_strikes + 1):
|
||||
ls.strikes[first_turn - 1][i] = Bool(i <= game_state.strikes)
|
||||
|
||||
# check if extraround has started (usually not)
|
||||
ls.extraround[first_turn - 1] = Bool(game_state.remaining_extra_turns < game_state.num_players)
|
||||
ls.dummyturn[first_turn -1] = Bool(False)
|
||||
|
||||
# set recent draws: important to model progress
|
||||
# we just pretend that the last card drawn was in fact drawn last turn,
|
||||
# regardless of when it was actually drawn
|
||||
for neg_turn in range(1, min(9, first_turn + 2)):
|
||||
for i in range(instance.num_players * instance.hand_size, instance.deck_size):
|
||||
ls.draw[first_turn - neg_turn][i] = Bool(neg_turn == 1 and i == game_state.progress - 1)
|
||||
# forbid re-drawing of the last card drawn
|
||||
for m in range(first_turn, instance.max_winning_moves):
|
||||
ls.draw[m][game_state.progress - 1] = Bool(False)
|
||||
|
||||
|
||||
# model initial progress
|
||||
for s in range(0, game_state.num_suits):
|
||||
for r in range(0, 6):
|
||||
ls.progress[first_turn - 1][s, r] = Bool(r <= game_state.stacks[s])
|
||||
|
||||
### Now, model all valid moves
|
||||
|
||||
valid_move = lambda m: And(
|
||||
# in dummy turns, nothing can be discarded
|
||||
Implies(ls.dummyturn[m], Not(ls.discard_any[m])),
|
||||
|
||||
# definition of discard_any
|
||||
Iff(ls.discard_any[m], Or(ls.discard[m][i] for i in range(instance.deck_size))),
|
||||
|
||||
# definition of draw_any
|
||||
Iff(ls.draw_any[m], Or(ls.draw[m][i] for i in range(game_state.progress, instance.deck_size))),
|
||||
|
||||
# ls.draw implies ls.discard (and converse true before the ls.extraround)
|
||||
Implies(ls.draw_any[m], ls.discard_any[m]),
|
||||
Implies(ls.discard_any[m], Or(ls.extraround[m], ls.draw_any[m])),
|
||||
|
||||
# ls.play requires ls.discard
|
||||
Implies(ls.play[m], ls.discard_any[m]),
|
||||
|
||||
# definition of ls.play5
|
||||
Iff(ls.play5[m], And(ls.play[m], Or(ls.discard[m][i] for i in range(instance.deck_size) if instance.deck[i].rank == 5))),
|
||||
|
||||
# definition of ls.incr_clues
|
||||
Iff(ls.incr_clues[m], And(ls.discard_any[m], NotEquals(ls.clues[m-1], Int(16 if instance.clue_starved else 8)), Implies(ls.play[m], ls.play5[m]))),
|
||||
|
||||
# change of ls.clues
|
||||
Implies(And(Not(ls.discard_any[m]), Not(ls.dummyturn[m])),
|
||||
Equals(ls.clues[m], ls.clues[m-1] - (2 if instance.clue_starved else 1))),
|
||||
Implies(ls.incr_clues[m], Equals(ls.clues[m], ls.clues[m-1] + 1)),
|
||||
Implies(And(Or(ls.discard_any[m], ls.dummyturn[m]), Not(ls.incr_clues[m])), Equals(ls.clues[m], ls.clues[m-1])),
|
||||
|
||||
# change of pace
|
||||
Implies(And(ls.discard_any[m], Or(ls.strike[m], Not(ls.play[m]))), Equals(ls.pace[m], ls.pace[m-1] - 1)),
|
||||
Implies(Or(Not(ls.discard_any[m]), And(Not(ls.strike[m]), ls.play[m])), Equals(ls.pace[m], ls.pace[m-1])),
|
||||
|
||||
# pace is nonnegative
|
||||
GE(ls.pace[m], Int(min_pace)),
|
||||
|
||||
## more than 8 clues not allowed, ls.discarding produces a strike
|
||||
# Note that this means that we will never strike while not at 8 clues.
|
||||
# It's easy to see that if there is any solution to the instance, then there is also one where we only strike at 8 clues
|
||||
# (or not at all) -> Just strike later if neccessary
|
||||
# So, we decrease the solution space with this formulation, but do not change whether it's empty or not
|
||||
Iff(ls.strike[m], And(ls.discard_any[m], Not(ls.play[m]), Equals(ls.clues[m-1], Int(16 if instance.clue_starved else 8)))),
|
||||
|
||||
# change of strikes
|
||||
*[Iff(ls.strikes[m][i], Or(ls.strikes[m-1][i], And(ls.strikes[m-1][i-1], ls.strike[m]))) for i in range(1, instance.num_strikes + 1)],
|
||||
|
||||
# less than 0 clues not allowed
|
||||
Implies(Not(ls.discard_any[m]), Or(GE(ls.clues[m-1], Int(1)), ls.dummyturn[m])),
|
||||
|
||||
# we can only draw card i if the last ls.drawn card was i-1
|
||||
*[Implies(ls.draw[m][i], Or(And(ls.draw[m0][i-1], *[Not(ls.draw_any[m1]) for m1 in range(m0+1, m)]) for m0 in range(max(first_turn - 1, m-9), m))) for i in range(game_state.progress, instance.deck_size)],
|
||||
|
||||
# we can only draw at most one card (NOTE: redundant, FIXME: avoid quadratic formula)
|
||||
AtMostOne(ls.draw[m][i] for i in range(game_state.progress, instance.deck_size)),
|
||||
|
||||
# we can only discard a card if we drew it earlier...
|
||||
*[Implies(ls.discard[m][i], Or(ls.draw[m0][i] for m0 in range(m-instance.num_players, first_turn - 1, -instance.num_players))) for i in range(game_state.progress, instance.deck_size)],
|
||||
|
||||
# ...or if it was part of the initial hand
|
||||
*[Not(ls.discard[m][i]) for i in range(0, game_state.progress) if i not in starting_hands[m % instance.num_players] ],
|
||||
|
||||
# we can only discard a card if we did not discard it yet
|
||||
*[Implies(ls.discard[m][i], And(Not(ls.discard[m0][i]) for m0 in range(m-instance.num_players, first_turn - 1, -instance.num_players))) for i in range(instance.deck_size)],
|
||||
|
||||
# we can only discard at most one card (FIXME: avoid quadratic formula)
|
||||
AtMostOne(ls.discard[m][i] for i in range(instance.deck_size)),
|
||||
|
||||
# we can only play a card if it matches the progress
|
||||
*[Implies(
|
||||
And(ls.discard[m][i], ls.play[m]),
|
||||
And(
|
||||
Not(ls.progress[m-1][instance.deck[i].suitIndex, instance.deck[i].rank]),
|
||||
ls.progress[m-1][instance.deck[i].suitIndex, instance.deck[i].rank-1 ]
|
||||
)
|
||||
)
|
||||
for i in range(instance.deck_size)
|
||||
],
|
||||
|
||||
# change of progress
|
||||
*[
|
||||
Iff(
|
||||
ls.progress[m][s, r],
|
||||
Or(
|
||||
ls.progress[m-1][s, r],
|
||||
And(ls.play[m], Or(ls.discard[m][i]
|
||||
for i in range(0, instance.deck_size)
|
||||
if instance.deck[i] == DeckCard(s, r) ))
|
||||
)
|
||||
)
|
||||
for s in range(0, instance.num_suits)
|
||||
for r in range(1, 6)
|
||||
],
|
||||
|
||||
# extra round bool
|
||||
Iff(ls.extraround[m], Or(ls.extraround[m-1], ls.draw[m-1][instance.deck_size-1])),
|
||||
|
||||
# dummy turn bool
|
||||
*[Iff(ls.dummyturn[m], Or(ls.dummyturn[m-1], ls.draw[m-1 - instance.num_players][instance.deck_size-1])) for i in range(0,1) if m >= instance.num_players]
|
||||
)
|
||||
|
||||
win = And(
|
||||
# maximum progress at each color
|
||||
*[ls.progress[instance.max_winning_moves-1][s, 5] for s in range(0, instance.num_suits)],
|
||||
|
||||
# played every color/value combination (NOTE: redundant, but makes solving faster)
|
||||
*[
|
||||
Or(
|
||||
And(ls.discard[m][i], ls.play[m])
|
||||
for m in range(first_turn, instance.max_winning_moves)
|
||||
for i in range(instance.deck_size)
|
||||
if game_state.deck[i] == DeckCard(s, r)
|
||||
)
|
||||
for s in range(0, instance.num_suits)
|
||||
for r in range(1, 6)
|
||||
if r > game_state.stacks[s]
|
||||
]
|
||||
)
|
||||
|
||||
constraints = And(*[valid_move(m) for m in range(first_turn, instance.max_winning_moves)], win)
|
||||
# print('Solving instance with {} variables, {} nodes'.format(len(get_atoms(constraints)), get_formula_size(constraints)))
|
||||
|
||||
model = get_model(constraints)
|
||||
if model:
|
||||
log_model(model, game_state, ls)
|
||||
solution = evaluate_model(model, copy.deepcopy(game_state), ls)
|
||||
return True, solution
|
||||
else:
|
||||
#conj = list(conjunctive_partition(constraints))
|
||||
#print('statements: {}'.format(len(conj)))
|
||||
#ucore = get_unsat_core(conj)
|
||||
#print('unsat core size: {}'.format(len(ucore)))
|
||||
#for f in ucore:
|
||||
# print(f.serialize())
|
||||
return False, None
|
||||
|
||||
|
||||
def log_model(model, cur_game_state, ls: Literals):
|
||||
deck = cur_game_state.deck
|
||||
first_turn = len(cur_game_state.actions)
|
||||
if first_turn > 0:
|
||||
logger.debug('[print_model] Note: Omitting first {} turns, since they were fixed already.'.format(first_turn))
|
||||
for m in range(first_turn, cur_game_state.instance.max_winning_moves):
|
||||
logger.debug('=== move {} ==='.format(m))
|
||||
logger.debug('clues: {}'.format(model.get_py_value(ls.clues[m])))
|
||||
logger.debug('strikes: ' + ''.join(str(i) for i in range(1, 3) if model.get_py_value(ls.strikes[m][i])))
|
||||
logger.debug('draw: ' + ', '.join('{}: {}'.format(i, deck[i]) for i in range(cur_game_state.progress, cur_game_state.instance.deck_size) if model.get_py_value(ls.draw[m][i])))
|
||||
logger.debug('discard: ' + ', '.join('{}: {}'.format(i, deck[i]) for i in range(cur_game_state.instance.deck_size) if model.get_py_value(ls.discard[m][i])))
|
||||
logger.debug('pace: {}'.format(model.get_py_value(ls.pace[m])))
|
||||
for s in range(0, cur_game_state.instance.num_suits):
|
||||
logger.debug('progress {}: '.format(COLOR_INITIALS[s]) + ''.join(str(r) for r in range(1, 6) if model.get_py_value(ls.progress[m][s, r])))
|
||||
flags = ['discard_any', 'draw_any', 'play', 'play5', 'incr_clues', 'strike', 'extraround', 'dummyturn']
|
||||
logger.debug(', '.join(f for f in flags if model.get_py_value(getattr(ls, f)[m])))
|
||||
|
||||
|
||||
|
||||
# given the initial game state and the model found by the SAT solver,
|
||||
# evaluates the model to produce a full game history
|
||||
def evaluate_model(model, cur_game_state: GameState, ls: Literals) -> GameState:
|
||||
for m in range(len(cur_game_state.actions), cur_game_state.instance.max_winning_moves):
|
||||
if model.get_py_value(ls.dummyturn[m]) or cur_game_state.is_over():
|
||||
break
|
||||
if model.get_py_value(ls.discard_any[m]):
|
||||
card_idx = next(i for i in range(0, cur_game_state.instance.deck_size) if model.get_py_value(ls.discard[m][i]))
|
||||
if model.get_py_value(ls.play[m]) or model.get_py_value(ls.strike[m]):
|
||||
cur_game_state.play(card_idx)
|
||||
else:
|
||||
cur_game_state.discard(card_idx)
|
||||
else:
|
||||
cur_game_state.clue()
|
||||
|
||||
return cur_game_state
|
||||
|
||||
|
||||
|
||||
def run_deck():
|
||||
puzzle = True
|
||||
if puzzle:
|
||||
deck_str = 'p5 p3 b4 r5 y4 y4 y5 r4 b2 y2 y3 g5 g2 g3 g4 p4 r3 b2 b3 b3 p4 b1 p2 b1 b1 p2 p1 p1 g1 r4 g1 r1 r3 r1 g1 r1 p1 b4 p3 g2 g3 g4 b5 y1 y1 y1 r2 r2 y2 y3'
|
||||
|
||||
deck = [DeckCard(COLOR_INITIALS.index(c[0]), int(c[1])) for c in deck_str.split(" ")]
|
||||
num_p = 5
|
||||
else:
|
||||
deck_str = "15gfvqluvuwaqnmrkpkaignlaxpjbmsprksfcddeybfixchuhtwo"
|
||||
deck_str = "15diuknfwhqbplsrlkxjuvfbwyacoaxgtudcerskqfnhpgampmiv"
|
||||
deck_str = "15jdxlpobvikrnhkslcuwggimtphafquqfvcwadampxkeyfrbnsu"
|
||||
deck = decompress_deck(deck_str)
|
||||
num_p = 6
|
||||
|
||||
print(deck)
|
||||
|
||||
gs = GameState(HanabiInstance(deck, num_p))
|
||||
if puzzle:
|
||||
gs.play(2)
|
||||
else:
|
||||
strat = GreedyStrategy(gs)
|
||||
for _ in range(17):
|
||||
strat.make_move()
|
||||
|
||||
solvable, sol = solve_sat(gs, 0)
|
||||
if solvable:
|
||||
print(sol)
|
||||
print(link(sol))
|
||||
else:
|
||||
print('unsolvable')
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_deck()
|
|
@ -1,35 +1,25 @@
|
|||
import json
|
||||
from typing import Optional, Dict
|
||||
|
||||
import requests_cache
|
||||
import platformdirs
|
||||
from log_setup import logger
|
||||
|
||||
from hanabi import logger
|
||||
from hanabi import constants
|
||||
|
||||
# Cache all requests to site to reduce traffic and latency
|
||||
session = requests_cache.CachedSession(
|
||||
platformdirs.user_cache_dir(constants.APP_NAME) + '/hanab.live',
|
||||
urls_expire_after={
|
||||
'hanab.live/export/*': requests_cache.NEVER_EXPIRE
|
||||
}
|
||||
)
|
||||
session = requests_cache.CachedSession('hanab.live')
|
||||
|
||||
|
||||
def get(url, refresh=False) -> Optional[Dict | str]:
|
||||
def get(url, refresh=False) -> Optional[Dict]:
|
||||
# print("sending request for " + url)
|
||||
query = "https://hanab.live/" + url
|
||||
logger.debug("GET {} (force_refresh={})".format(query, refresh))
|
||||
response = session.get(query, force_refresh=refresh)
|
||||
if not response:
|
||||
logger.debug("Failed to get request {} from hanab.live".format(query))
|
||||
logger.error("Failed to get request {} from hanab.live".format(query))
|
||||
return None
|
||||
if not response.status_code == 200:
|
||||
logger.debug("Request {} from hanab.live produced status code {}".format(query, response.status_code))
|
||||
return None
|
||||
if "application/json" in response.headers['content-type']:
|
||||
return json.loads(response.text)
|
||||
return response.text
|
||||
|
||||
|
||||
def api(url, refresh=False):
|
|
@ -1,193 +0,0 @@
|
|||
import argparse
|
||||
import json
|
||||
from typing import Optional
|
||||
|
||||
import verboselogs
|
||||
|
||||
from hanabi import logger, logger_manager
|
||||
from hanabi.live import variants
|
||||
from hanabi.live import check_game
|
||||
from hanabi.live import download_data
|
||||
from hanabi.live import compress
|
||||
from hanabi.live import instance_finder
|
||||
from hanabi.database import init_database
|
||||
from hanabi.database import global_db_connection_manager
|
||||
|
||||
"""
|
||||
Commands supported:
|
||||
|
||||
init db + populate tables
|
||||
download games of variant
|
||||
download single game
|
||||
analyze single game
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def subcommand_analyze(game_id: int, download: bool = False):
|
||||
if download:
|
||||
download_data.detailed_export_game(game_id)
|
||||
logger.info('Analyzing game {}'.format(game_id))
|
||||
turn, sol = check_game.check_game(game_id)
|
||||
if turn == 0:
|
||||
logger.info('Instance is unfeasible')
|
||||
else:
|
||||
logger.info('Game was first lost after {} turns.'.format(turn))
|
||||
logger.info(
|
||||
'A replay achieving perfect score from the previous turn onwards is: {}#{}'
|
||||
.format(compress.link(sol), turn)
|
||||
)
|
||||
|
||||
|
||||
def subcommand_decompress(game_link: str):
|
||||
parts = game_link.split('replay-json/')
|
||||
game_str = parts[-1].rstrip('/')
|
||||
game = compress.decompress_game_state(game_str)
|
||||
print(json.dumps(game.to_json()))
|
||||
|
||||
|
||||
def subcommand_init(force: bool, populate: bool):
|
||||
tables = init_database.get_existing_tables()
|
||||
if len(tables) > 0 and not force:
|
||||
logger.info(
|
||||
'Database tables "{}" exist already, aborting. To force re-initialization, use the --force options'
|
||||
.format(", ".join(tables))
|
||||
)
|
||||
return
|
||||
if len(tables) > 0:
|
||||
logger.info(
|
||||
"WARNING: This will drop all existing tables from the database and re-initialize them."
|
||||
)
|
||||
response = input("Do you wish to continue? [y/N] ")
|
||||
if response not in ["y", "Y", "yes"]:
|
||||
return
|
||||
init_database.init_database_tables()
|
||||
logger.info("Successfully initialized database tables")
|
||||
if populate:
|
||||
init_database.populate_static_tables()
|
||||
logger.info("Successfully populated tables with variants and suits from hanab.live")
|
||||
|
||||
|
||||
def subcommand_download(
|
||||
game_id: Optional[int]
|
||||
, variant_id: Optional[int]
|
||||
, export_all: bool = False
|
||||
, all_variants: bool = False
|
||||
):
|
||||
if game_id is not None:
|
||||
download_data.detailed_export_game(game_id)
|
||||
logger.info("Successfully exported game {}".format(game_id))
|
||||
if variant_id is not None:
|
||||
download_data.download_games(variant_id, export_all)
|
||||
logger.info("Successfully exported games for variant id {}".format(variant_id))
|
||||
if all_variants:
|
||||
for variant in variants.get_all_variant_ids():
|
||||
download_data.download_games(variant, export_all)
|
||||
logger.info("Successfully exported games for all variants")
|
||||
|
||||
|
||||
def subcommand_solve(var_id):
|
||||
instance_finder.solve_unknown_seeds(var_id, '')
|
||||
|
||||
|
||||
|
||||
def subcommand_gen_config():
|
||||
global_db_connection_manager.create_config_file()
|
||||
|
||||
|
||||
def add_init_subparser(subparsers):
|
||||
parser = subparsers.add_parser(
|
||||
'init',
|
||||
help='Init database tables, retrieve variant and suit information from hanab.live'
|
||||
)
|
||||
parser.add_argument('--force', '-f', help='Force initialization (Drops existing tables)', action='store_true')
|
||||
parser.add_argument(
|
||||
'--no-populate-tables', '-n',
|
||||
help='Do not download variant and suit information from hanab.live',
|
||||
action='store_false',
|
||||
dest='populate'
|
||||
)
|
||||
|
||||
|
||||
def add_download_subparser(subparsers):
|
||||
parser = subparsers.add_parser('download', help='Download games from hanab.live')
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument(
|
||||
'--var', '--variant', '-v',
|
||||
type=int,
|
||||
dest='variant_id',
|
||||
help='Download information on all games given variant id (but not necessarily export all of them)'
|
||||
)
|
||||
group.add_argument('--id', '-i', type=int, dest='game_id', help='Download single game given id')
|
||||
group.add_argument(
|
||||
'--all-variants', '-a',
|
||||
action='store_true',
|
||||
dest='all_variants',
|
||||
help='Download information from games on all variants (but not necessarily export all of them)'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--export-all', '-e',
|
||||
action='store_true',
|
||||
dest='export_all',
|
||||
help='Export all games specified in full detail (i.e. also actions and game options)'
|
||||
)
|
||||
|
||||
|
||||
def add_analyze_subparser(subparsers):
|
||||
parser = subparsers.add_parser('analyze', help='Analyze a game and find the last winning state')
|
||||
parser.add_argument('game_id', type=int)
|
||||
parser.add_argument('--download', '-d', help='Download game if not in database', action='store_true')
|
||||
|
||||
|
||||
def add_config_gen_subparser(subparsers):
|
||||
parser = subparsers.add_parser('gen-config', help='Generate config file at default location')
|
||||
|
||||
|
||||
def add_solve_subparser(subparsers):
|
||||
parser = subparsers.add_parser('solve', help='Seed solving')
|
||||
parser.add_argument('--var_id', type=int, help='Variant id to solve instances from.', default=0)
|
||||
|
||||
def add_decompress_subparser(subparsers):
|
||||
parser = subparsers.add_parser('decompress', help='Decompress a hanab.live JSON-encoded replay link')
|
||||
parser.add_argument('game_link', type=str)
|
||||
|
||||
|
||||
def main_parser() -> argparse.ArgumentParser:
|
||||
parser = argparse.ArgumentParser(
|
||||
prog='hanabi_suite',
|
||||
description='High-level interface for analysis of hanabi instances.'
|
||||
)
|
||||
parser.add_argument('--verbose', '-v', help='Enable verbose logging to console', action='store_true')
|
||||
subparsers = parser.add_subparsers(dest='command', required=True, help='select subcommand')
|
||||
|
||||
add_init_subparser(subparsers)
|
||||
add_analyze_subparser(subparsers)
|
||||
add_download_subparser(subparsers)
|
||||
add_config_gen_subparser(subparsers)
|
||||
add_solve_subparser(subparsers)
|
||||
add_decompress_subparser(subparsers)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
def hanabi_cli():
|
||||
args = main_parser().parse_args()
|
||||
subcommand_func = {
|
||||
'analyze': subcommand_analyze,
|
||||
'init': subcommand_init,
|
||||
'download': subcommand_download,
|
||||
'gen-config': subcommand_gen_config,
|
||||
'solve': subcommand_solve,
|
||||
'decompress': subcommand_decompress
|
||||
}[args.command]
|
||||
|
||||
if args.command != 'gen-config':
|
||||
global_db_connection_manager.read_config()
|
||||
global_db_connection_manager.connect()
|
||||
|
||||
if args.verbose:
|
||||
logger_manager.set_console_level(verboselogs.VERBOSE)
|
||||
del args.command
|
||||
del args.verbose
|
||||
|
||||
subcommand_func(**vars(args))
|
|
@ -1,6 +0,0 @@
|
|||
from .database import DBConnectionManager
|
||||
|
||||
global_db_connection_manager = DBConnectionManager()
|
||||
|
||||
conn = global_db_connection_manager.lazy_conn
|
||||
cur = global_db_connection_manager.lazy_cur
|
|
@ -1,95 +0,0 @@
|
|||
from typing import Optional
|
||||
from pathlib import Path
|
||||
import yaml
|
||||
|
||||
import psycopg2
|
||||
import platformdirs
|
||||
|
||||
from hanabi import constants
|
||||
from hanabi import logger
|
||||
|
||||
|
||||
class LazyDBCursor:
|
||||
def __init__(self):
|
||||
self.__cur: Optional[psycopg2.cursor] = None
|
||||
|
||||
def __getattr__(self, item):
|
||||
if self.__cur is None:
|
||||
raise ValueError(
|
||||
"DB cursor used in uninitialized state. Did you forget to initialize the DB connection?"
|
||||
)
|
||||
return getattr(self.__cur, item)
|
||||
|
||||
def set_cur(self, cur):
|
||||
self.__cur = cur
|
||||
|
||||
|
||||
class LazyDBConnection:
|
||||
def __init__(self):
|
||||
self.__conn: Optional[psycopg2.connection] = None
|
||||
|
||||
def __getattr__(self, item):
|
||||
if self.__conn is None:
|
||||
raise ValueError(
|
||||
"DB connection used in uninitialized state. Did you forget to initialize the DB connection?"
|
||||
)
|
||||
return getattr(self.__conn, item)
|
||||
|
||||
def set_conn(self, conn):
|
||||
self.__conn = conn
|
||||
|
||||
|
||||
class DBConnectionManager:
|
||||
def __init__(self):
|
||||
self.lazy_conn: LazyDBConnection = LazyDBConnection()
|
||||
self.lazy_cur: LazyDBCursor = LazyDBCursor()
|
||||
self.config_file = Path(platformdirs.user_config_dir(constants.APP_NAME, ensure_exists=True)) / 'config.yaml'
|
||||
self.db_name: str = constants.DEFAULT_DB_NAME
|
||||
self.db_user: str = constants.DEFAULT_DB_USER
|
||||
self.db_pass: Optional[str] = None
|
||||
|
||||
def read_config(self):
|
||||
logger.debug("DB connection configuration read from {}".format(self.config_file))
|
||||
if self.config_file.exists():
|
||||
with open(self.config_file, "r") as f:
|
||||
config = yaml.safe_load(f)
|
||||
self.db_name = config.get('dbname', None)
|
||||
self.db_user = config.get('dbuser', None)
|
||||
self.db_pass = config.get('dbpass', None)
|
||||
if self.db_name is None:
|
||||
logger.verbose("Falling back to default database name {}".format(constants.DEFAULT_DB_NAME))
|
||||
self.db_name = constants.DEFAULT_DB_NAME
|
||||
if self.db_user is None:
|
||||
logger.verbose("Falling back to default database user {}".format(constants.DEFAULT_DB_USER))
|
||||
self.db_user = constants.DEFAULT_DB_USER
|
||||
else:
|
||||
logger.info(
|
||||
"No configuration file for database connection found, falling back to default values "
|
||||
"(dbname={}, dbuser={}).".format(
|
||||
constants.DEFAULT_DB_NAME, constants.DEFAULT_DB_USER
|
||||
)
|
||||
)
|
||||
logger.info(
|
||||
"Note: To turn off this message, create a config file at {}".format(self.config_file)
|
||||
)
|
||||
|
||||
def create_config_file(self):
|
||||
if self.config_file.exists():
|
||||
raise FileExistsError("Configuration file already exists, not overriding.")
|
||||
self.config_file.write_text(
|
||||
"dbname: {}\n"
|
||||
"dbuser: {}\n"
|
||||
"dbpass: null".format(
|
||||
constants.DEFAULT_DB_NAME,
|
||||
constants.DEFAULT_DB_USER
|
||||
)
|
||||
)
|
||||
logger.info("Initialised default config file {}".format(self.config_file))
|
||||
|
||||
def connect(self):
|
||||
conn = psycopg2.connect("dbname='{}' user='{}' password='{}' host='localhost'".format(
|
||||
self.db_name, self.db_user, self.db_pass)
|
||||
)
|
||||
cur = conn.cursor()
|
||||
self.lazy_conn.set_conn(conn)
|
||||
self.lazy_cur.set_cur(cur)
|
|
@ -1,129 +0,0 @@
|
|||
from typing import List, Tuple
|
||||
|
||||
import psycopg2.extras
|
||||
|
||||
import hanabi.hanab_game
|
||||
import hanabi.live.hanab_live
|
||||
from hanabi import logger
|
||||
|
||||
from hanabi.database import conn, cur
|
||||
|
||||
|
||||
def store_actions(game_id: int, actions: List[hanabi.hanab_game.Action]):
|
||||
vals = []
|
||||
for turn, action in enumerate(actions):
|
||||
vals.append((game_id, turn, action.type.value, action.target, action.value or 0))
|
||||
|
||||
psycopg2.extras.execute_values(
|
||||
cur,
|
||||
"INSERT INTO game_actions (game_id, turn, type, target, value) "
|
||||
"VALUES %s "
|
||||
"ON CONFLICT (game_id, turn) "
|
||||
"DO NOTHING",
|
||||
vals
|
||||
)
|
||||
conn.commit()
|
||||
|
||||
|
||||
def store_deck_for_seed(seed: str, deck: List[hanabi.hanab_game.DeckCard]):
|
||||
vals = []
|
||||
for index, card in enumerate(deck):
|
||||
vals.append((seed, index, card.suitIndex, card.rank))
|
||||
|
||||
psycopg2.extras.execute_values(
|
||||
cur,
|
||||
"INSERT INTO decks (seed, deck_index, suit_index, rank) "
|
||||
"VALUES %s "
|
||||
"ON CONFLICT (seed, deck_index) DO UPDATE SET "
|
||||
"(suit_index, rank) = (excluded.suit_index, excluded.rank)",
|
||||
vals
|
||||
)
|
||||
conn.commit()
|
||||
|
||||
|
||||
def load_actions(game_id: int) -> List[hanabi.hanab_game.Action]:
|
||||
cur.execute("SELECT type, target, value FROM game_actions "
|
||||
"WHERE game_id = %s "
|
||||
"ORDER BY turn ASC",
|
||||
(game_id,))
|
||||
actions = []
|
||||
for action_type, target, value in cur.fetchall():
|
||||
actions.append(
|
||||
hanabi.hanab_game.Action(hanabi.hanab_game.ActionType(action_type), target, value)
|
||||
)
|
||||
if len(actions) == 0:
|
||||
err_msg = "Failed to load actions for game id {} from DB: No actions stored.".format(game_id)
|
||||
logger.error(err_msg)
|
||||
raise ValueError(err_msg)
|
||||
return actions
|
||||
|
||||
|
||||
def load_deck(seed: str) -> List[hanabi.hanab_game.DeckCard]:
|
||||
cur.execute("SELECT deck_index, suit_index, rank FROM decks "
|
||||
"WHERE seed = %s "
|
||||
"ORDER BY deck_index ASC",
|
||||
(seed,)
|
||||
)
|
||||
deck = []
|
||||
for index, (card_index, suit_index, rank) in enumerate(cur.fetchall()):
|
||||
assert index == card_index
|
||||
deck.append(
|
||||
hanabi.hanab_game.DeckCard(suit_index, rank, card_index)
|
||||
)
|
||||
if len(deck) == 0:
|
||||
err_msg = "Failed to load deck for seed {} from DB: No cards stored.".format(seed)
|
||||
logger.error(err_msg)
|
||||
raise ValueError(err_msg)
|
||||
return deck
|
||||
|
||||
|
||||
def load_game_parts(game_id: int) -> Tuple[hanabi.live.hanab_live.HanabLiveInstance, List[hanabi.hanab_game.Action]]:
|
||||
"""
|
||||
Loads information on game from database
|
||||
@param game_id: ID of game
|
||||
@return: Instance (i.e. deck + settings) of game, list of actions, variant name
|
||||
"""
|
||||
cur.execute(
|
||||
"SELECT "
|
||||
"games.num_players, games.seed, games.one_extra_card, games.one_less_card, games.deck_plays, "
|
||||
"games.all_or_nothing,"
|
||||
"variants.clue_starved, variants.name, variants.id, variants.throw_it_in_a_hole "
|
||||
"FROM games "
|
||||
"INNER JOIN variants"
|
||||
" ON games.variant_id = variants.id "
|
||||
"WHERE games.id = %s",
|
||||
(game_id,)
|
||||
)
|
||||
res = cur.fetchone()
|
||||
if res is None:
|
||||
err_msg = "Failed to retrieve game details of game {}.".format(game_id)
|
||||
logger.error(err_msg)
|
||||
raise ValueError(err_msg)
|
||||
|
||||
# Unpack results now
|
||||
(num_players, seed, one_extra_card, one_less_card, deck_plays, all_or_nothing, clue_starved, variant_name, variant_id, throw_it_in_a_hole) = res
|
||||
|
||||
actions = load_actions(game_id)
|
||||
deck = load_deck(seed)
|
||||
|
||||
instance = hanabi.live.hanab_live.HanabLiveInstance(
|
||||
deck=deck,
|
||||
num_players=num_players,
|
||||
variant_id=variant_id,
|
||||
one_extra_card=one_extra_card,
|
||||
one_less_card=one_less_card,
|
||||
fives_give_clue=not throw_it_in_a_hole,
|
||||
deck_plays=deck_plays,
|
||||
all_or_nothing=all_or_nothing,
|
||||
clue_starved=clue_starved
|
||||
)
|
||||
return instance, actions
|
||||
|
||||
|
||||
def load_game(game_id: int) -> hanabi.live.hanab_live.HanabLiveGameState:
|
||||
instance, actions = load_game_parts(game_id)
|
||||
game = hanabi.live.hanab_live.HanabLiveGameState(instance)
|
||||
for action in actions:
|
||||
game.make_action(action)
|
||||
return game
|
||||
|
|
@ -1,154 +0,0 @@
|
|||
DROP TABLE IF EXISTS users CASCADE;
|
||||
CREATE TABLE users (
|
||||
id SERIAL PRIMARY KEY,
|
||||
username TEXT NOT NULL UNIQUE,
|
||||
normalized_username TEXT NOT NULL UNIQUE
|
||||
);
|
||||
|
||||
|
||||
DROP TABLE IF EXISTS seeds CASCADE;
|
||||
CREATE TABLE seeds (
|
||||
seed TEXT NOT NULL PRIMARY KEY,
|
||||
num_players SMALLINT NOT NULL,
|
||||
variant_id SMALLINT NOT NULL,
|
||||
starting_player SMALLINT NOT NULL DEFAULT 0,
|
||||
feasible BOOLEAN DEFAULT NULL,
|
||||
max_score_theoretical SMALLINT
|
||||
);
|
||||
CREATE INDEX seeds_variant_idx ON seeds (variant_id);
|
||||
|
||||
|
||||
DROP TABLE IF EXISTS decks CASCADE;
|
||||
CREATE TABLE decks (
|
||||
seed TEXT REFERENCES seeds (seed),
|
||||
/* Order of card in deck*/
|
||||
deck_index SMALLINT NOT NULL,
|
||||
/* Suit */
|
||||
suit_index SMALLINT NOT NULL,
|
||||
/* Rank */
|
||||
rank SMALLINT NOT NULL,
|
||||
PRIMARY KEY (seed, deck_index)
|
||||
);
|
||||
|
||||
DROP TABLE IF EXISTS games CASCADE;
|
||||
CREATE TABLE games (
|
||||
id INT PRIMARY KEY,
|
||||
num_players SMALLINT NOT NULL,
|
||||
|
||||
starting_player SMALLINT NOT NULL DEFAULT 0,
|
||||
|
||||
variant_id SMALLINT NOT NULL,
|
||||
|
||||
timed BOOLEAN,
|
||||
time_base INTEGER,
|
||||
time_per_turn INTEGER,
|
||||
speedrun BOOLEAN,
|
||||
card_cycle BOOLEAN,
|
||||
deck_plays BOOLEAN,
|
||||
empty_clues BOOLEAN,
|
||||
one_extra_card BOOLEAN,
|
||||
one_less_card BOOLEAN,
|
||||
all_or_nothing BOOLEAN,
|
||||
detrimental_characters BOOLEAN,
|
||||
|
||||
seed TEXT NOT NULL REFERENCES seeds,
|
||||
score SMALLINT NOT NULL,
|
||||
num_turns SMALLINT
|
||||
);
|
||||
|
||||
CREATE INDEX games_seed_score_idx ON games (seed, score);
|
||||
CREATE INDEX games_var_seed_idx ON games (variant_id, seed);
|
||||
CREATE INDEX games_player_idx ON games (num_players);
|
||||
|
||||
|
||||
|
||||
DROP TABLE IF EXISTS game_participants CASCADE;
|
||||
CREATE TABLE game_participants (
|
||||
id SERIAL PRIMARY KEY,
|
||||
game_id INTEGER NOT NULL,
|
||||
user_id INTEGER NOT NULL,
|
||||
seat SMALLINT NOT NULL, /* Needed for the "GetNotes()" function */
|
||||
FOREIGN KEY (game_id) REFERENCES games (id) ON DELETE CASCADE,
|
||||
FOREIGN KEY (user_id) REFERENCES users (id) ON DELETE CASCADE,
|
||||
CONSTRAINT game_participants_unique UNIQUE (game_id, user_id)
|
||||
);
|
||||
|
||||
|
||||
DROP FUNCTION IF EXISTS delete_game_of_deleted_participant;
|
||||
CREATE FUNCTION delete_game_of_deleted_participant() RETURNS TRIGGER AS $_$
|
||||
BEGIN
|
||||
DELETE FROM games WHERE games.id = OLD.game_id;
|
||||
RETURN OLD;
|
||||
END $_$ LANGUAGE 'plpgsql';
|
||||
|
||||
CREATE TRIGGER delete_game_upon_participant_deletion
|
||||
AFTER DELETE ON game_participants
|
||||
FOR EACH ROW
|
||||
EXECUTE PROCEDURE delete_game_of_deleted_participant();
|
||||
|
||||
|
||||
DROP TABLE IF EXISTS game_participant_notes CASCADE;
|
||||
CREATE TABLE game_participant_notes (
|
||||
game_participant_id INTEGER NOT NULL,
|
||||
card_order SMALLINT NOT NULL, /* "order" is a reserved word in PostgreSQL. */
|
||||
note TEXT NOT NULL,
|
||||
FOREIGN KEY (game_participant_id) REFERENCES game_participants (id) ON DELETE CASCADE,
|
||||
PRIMARY KEY (game_participant_id, card_order)
|
||||
);
|
||||
|
||||
|
||||
DROP TABLE IF EXISTS game_actions CASCADE;
|
||||
CREATE TABLE game_actions (
|
||||
game_id INTEGER NOT NULL,
|
||||
turn SMALLINT NOT NULL,
|
||||
|
||||
/**
|
||||
* Corresponds to the "DatabaseGameActionType" enum.
|
||||
*
|
||||
* - 0 - play
|
||||
* - 1 - discard
|
||||
* - 2 - color clue
|
||||
* - 3 - rank clue
|
||||
* - 4 - game over
|
||||
*/
|
||||
type SMALLINT NOT NULL,
|
||||
|
||||
/**
|
||||
* - If a play or a discard, corresponds to the order of the the card that was played/discarded.
|
||||
* - If a clue, corresponds to the index of the player that received the clue.
|
||||
* - If a game over, corresponds to the index of the player that caused the game to end or -1 if
|
||||
* the game was terminated by the server.
|
||||
*/
|
||||
target SMALLINT NOT NULL,
|
||||
|
||||
/**
|
||||
* - If a play or discard, then 0 (as NULL). It uses less database space and reduces code
|
||||
* complexity to use a value of 0 for NULL than to use a SQL NULL:
|
||||
* https://dev.mysql.com/doc/refman/8.0/en/data-size.html
|
||||
* - If a color clue, then 0 if red, 1 if yellow, etc.
|
||||
* - If a rank clue, then 1 if 1, 2 if 2, etc.
|
||||
* - If a game over, then the value corresponds to the "endCondition" values in "constants.go".
|
||||
*/
|
||||
value SMALLINT NOT NULL,
|
||||
|
||||
FOREIGN KEY (game_id) REFERENCES games (id) ON DELETE CASCADE,
|
||||
PRIMARY KEY (game_id, turn)
|
||||
);
|
||||
|
||||
|
||||
DROP TABLE IF EXISTS score_upper_bounds;
|
||||
CREATE TABLE score_upper_bounds (
|
||||
seed TEXT NOT NULL REFERENCES seeds ON DELETE CASCADE,
|
||||
score_upper_bound SMALLINT NOT NULL,
|
||||
reason SMALLINT NOT NULL,
|
||||
UNIQUE (seed, reason)
|
||||
);
|
||||
|
||||
DROP TABLE IF EXISTS score_lower_bounds;
|
||||
CREATE TABLE score_lower_bounds (
|
||||
seed TEXT NOT NULL REFERENCES seeds ON DELETE CASCADE,
|
||||
score_lower_bound SMALLINT NOT NULL,
|
||||
game_id INT REFERENCES games ON DELETE CASCADE,
|
||||
actions TEXT,
|
||||
CHECK (num_nonnulls(game_id, actions) = 1)
|
||||
);
|
|
@ -1,224 +0,0 @@
|
|||
from typing import List, Union
|
||||
|
||||
import more_itertools
|
||||
|
||||
from hanabi import hanab_game
|
||||
from hanabi.live import hanab_live
|
||||
|
||||
# use same BASE62 as on hanab.live to encode decks
|
||||
BASE62 = "abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
||||
|
||||
|
||||
# Helper method, iterate over chunks of length n in a string
|
||||
def chunks(s: str, n: int):
|
||||
for i in range(0, len(s), n):
|
||||
yield s[i:i + n]
|
||||
|
||||
|
||||
# exception thrown by decompression methods if parsing fails
|
||||
class InvalidFormatError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
def compress_actions(actions: List[hanab_game.Action]) -> str:
|
||||
min_type = 0
|
||||
max_type = 0
|
||||
if len(actions) != 0:
|
||||
min_type = min(map(lambda a: a.type.value, actions))
|
||||
max_type = max(map(lambda a: a.type.value, actions))
|
||||
type_range = max_type - min_type + 1
|
||||
|
||||
def compress_action(action):
|
||||
# We encode action values with +1 to differentiate
|
||||
# null (encoded 0) and 0 (encoded 1)
|
||||
value = 0 if action.value is None else action.value + 1
|
||||
if action.type == hanab_game.ActionType.VoteTerminate:
|
||||
# This is currently a hack, the actual format has a 10 here,
|
||||
# but we cannot encode this
|
||||
value = 0
|
||||
try:
|
||||
a = BASE62[type_range * value + (action.type.value - min_type)]
|
||||
b = BASE62[action.target]
|
||||
except IndexError as e:
|
||||
raise ValueError("Encoding action failed, value too large, found {}".format(value)) from e
|
||||
return a + b
|
||||
|
||||
return "{}{}{}".format(
|
||||
min_type,
|
||||
max_type,
|
||||
''.join(map(compress_action, actions))
|
||||
)
|
||||
|
||||
|
||||
def decompress_actions(actions_str: str) -> List[hanab_game.Action]:
|
||||
if not len(actions_str) >= 2:
|
||||
raise InvalidFormatError("min/max range not specified, found: {}".format(actions_str))
|
||||
try:
|
||||
min_type = int(actions_str[0])
|
||||
max_type = int(actions_str[1])
|
||||
except ValueError as e:
|
||||
raise InvalidFormatError(
|
||||
"min/max range of actions not specified, expected two integers, found {}".format(actions_str[:2])
|
||||
) from e
|
||||
if not min_type <= max_type:
|
||||
raise InvalidFormatError("min/max range illegal, found [{},{}]".format(min_type, max_type))
|
||||
type_range = max_type - min_type + 1
|
||||
|
||||
if not len(actions_str) % 2 == 0:
|
||||
raise InvalidFormatError("Invalid action string length: Expected even number of characters")
|
||||
|
||||
for (index, char) in enumerate(actions_str[2:]):
|
||||
if char not in BASE62:
|
||||
raise InvalidFormatError(
|
||||
"Invalid character at index {}: Found {}, expected one of {}".format(
|
||||
index, char, BASE62
|
||||
)
|
||||
)
|
||||
|
||||
def decompress_action(action_idx: int, action: str):
|
||||
try:
|
||||
action_type_value = (BASE62.index(action[0]) % type_range) + min_type
|
||||
action_type = hanab_game.ActionType(action_type_value)
|
||||
except ValueError as e:
|
||||
raise InvalidFormatError(
|
||||
"Invalid action type at action {}: Found {}, expected one of {}".format(
|
||||
action_idx, action_type_value,
|
||||
[action_type.value for action_type in hanab_game.ActionType]
|
||||
)
|
||||
) from e
|
||||
|
||||
# We encode values with +1 to differentiate null (encoded 0) and 0 (encoded 1)
|
||||
value = BASE62.index(action[0]) // type_range - 1
|
||||
if value == -1:
|
||||
value = None
|
||||
if action_type in [hanab_game.ActionType.Play, hanab_game.ActionType.Discard]:
|
||||
if value is not None:
|
||||
raise InvalidFormatError(
|
||||
"Invalid action value: Action at action index {} is Play/Discard, expected value None, "
|
||||
"found: {}".format(action_idx, value)
|
||||
)
|
||||
target = BASE62.index(action[1])
|
||||
return hanab_game.Action(action_type, target, value)
|
||||
|
||||
return [decompress_action(idx, a) for (idx, a) in enumerate(chunks(actions_str[2:], 2))]
|
||||
|
||||
|
||||
def compress_deck(deck: List[hanab_game.DeckCard]) -> str:
|
||||
assert (len(deck) != 0)
|
||||
min_rank = min(map(lambda card: card.rank, deck))
|
||||
max_rank = max(map(lambda card: card.rank, deck))
|
||||
rank_range = max_rank - min_rank + 1
|
||||
|
||||
def compress_card(card):
|
||||
try:
|
||||
return BASE62[rank_range * card.suitIndex + (card.rank - min_rank)]
|
||||
except IndexError as e:
|
||||
raise InvalidFormatError(
|
||||
"Could not compress card, suit or rank too large. Found: {}".format(card)
|
||||
) from e
|
||||
|
||||
return "{}{}{}".format(
|
||||
min_rank,
|
||||
max_rank,
|
||||
''.join(map(compress_card, deck))
|
||||
)
|
||||
|
||||
|
||||
def decompress_deck(deck_str: str) -> List[hanab_game.DeckCard]:
|
||||
if len(deck_str) < 2:
|
||||
raise InvalidFormatError("min/max rank range not specified, found: {}".format(deck_str))
|
||||
try:
|
||||
min_rank = int(deck_str[0])
|
||||
max_rank = int(deck_str[1])
|
||||
except ValueError as e:
|
||||
raise InvalidFormatError(
|
||||
"min/max rank range not specified, expected two integers, found {}".format(deck_str[:2])
|
||||
) from e
|
||||
if not max_rank >= min_rank:
|
||||
raise InvalidFormatError(
|
||||
"Invalid rank range, found [{},{}]".format(min_rank, max_rank)
|
||||
)
|
||||
rank_range = max_rank - min_rank + 1
|
||||
|
||||
for (index, char) in enumerate(deck_str[2:]):
|
||||
if char not in BASE62:
|
||||
raise InvalidFormatError(
|
||||
"Invalid character at index {}: Found {}, expected one of {}".format(
|
||||
index, char, BASE62
|
||||
)
|
||||
)
|
||||
|
||||
def decompress_card(card_char):
|
||||
encoded = BASE62.index(card_char)
|
||||
suit_index = encoded // rank_range
|
||||
rank = encoded % rank_range + min_rank
|
||||
return hanab_game.DeckCard(suit_index, rank)
|
||||
|
||||
return [decompress_card(card) for card in deck_str[2:]]
|
||||
|
||||
|
||||
# compresses a standard GameState object into hanab.live format
|
||||
# which can be used in json replay links
|
||||
# The GameState object has to be standard / fitting hanab.live variants,
|
||||
# otherwise compression is not possible
|
||||
def compress_game_state(state: Union[hanab_game.GameState, hanab_live.HanabLiveGameState]) -> str:
|
||||
if isinstance(state, hanab_live.HanabLiveGameState):
|
||||
var_id = state.instance.variant_id
|
||||
else:
|
||||
assert isinstance(state, hanab_game.GameState)
|
||||
var_id = hanab_live.HanabLiveInstance.select_standard_variant_id(state.instance)
|
||||
out = "{}{},{},{}".format(
|
||||
state.instance.num_players,
|
||||
compress_deck(state.instance.deck),
|
||||
compress_actions(state.actions),
|
||||
var_id
|
||||
)
|
||||
with_dashes = ''.join(more_itertools.intersperse("-", out, 20))
|
||||
return with_dashes
|
||||
|
||||
|
||||
def decompress_game_state(game_str: str) -> hanab_live.HanabLiveGameState:
|
||||
game_str = game_str.replace("-", "")
|
||||
parts = game_str.split(",")
|
||||
if not len(parts) == 3:
|
||||
raise InvalidFormatError(
|
||||
"Expected 3 comma-separated parts of game, found {}".format(
|
||||
len(parts)
|
||||
)
|
||||
)
|
||||
[players_deck, actions, variant_id] = parts
|
||||
if len(players_deck) == 0:
|
||||
raise InvalidFormatError("Expected nonempty first part")
|
||||
try:
|
||||
num_players = int(players_deck[0])
|
||||
except ValueError as e:
|
||||
raise InvalidFormatError(
|
||||
"Expected number of players, found: {}".format(players_deck[0])
|
||||
) from e
|
||||
|
||||
try:
|
||||
deck = decompress_deck(players_deck[1:])
|
||||
except InvalidFormatError as e:
|
||||
raise InvalidFormatError("Error while parsing deck") from e
|
||||
|
||||
try:
|
||||
actions = decompress_actions(actions)
|
||||
except InvalidFormatError as e:
|
||||
raise InvalidFormatError("Error while parsing actions") from e
|
||||
|
||||
try:
|
||||
variant_id = int(variant_id)
|
||||
except ValueError:
|
||||
raise ValueError("Expected variant id, found: {}".format(variant_id))
|
||||
|
||||
instance = hanab_live.HanabLiveInstance(deck, num_players, variant_id)
|
||||
game = hanab_live.HanabLiveGameState(instance)
|
||||
|
||||
# TODO: game is not in consistent state
|
||||
game.actions = actions
|
||||
return game
|
||||
|
||||
|
||||
def link(game_state: hanab_game.GameState) -> str:
|
||||
compressed = compress_game_state(game_state)
|
||||
return "https://hanab.live/shared-replay-json/{}".format(compressed)
|
|
@ -1,363 +0,0 @@
|
|||
import alive_progress
|
||||
from typing import Dict, Optional, List
|
||||
|
||||
import psycopg2.errors
|
||||
import psycopg2.extras
|
||||
import platformdirs
|
||||
import unidecode
|
||||
|
||||
from hanabi import hanab_game
|
||||
from hanabi import constants
|
||||
from hanabi import logger
|
||||
from hanabi import database
|
||||
from hanabi.live import site_api
|
||||
from hanabi.live import variants
|
||||
from hanabi.live import hanab_live
|
||||
|
||||
from hanabi.database import games_db_interface
|
||||
|
||||
|
||||
|
||||
class GameExportError(ValueError):
|
||||
def __init__(self, game_id, msg):
|
||||
super().__init__("When exporting game {}: {}".format(game_id, msg))
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class GameExportNoResponseFromSiteError(GameExportError):
|
||||
def __init__(self, game_id):
|
||||
super().__init__(game_id, "No response from site")
|
||||
|
||||
|
||||
class GameExportInvalidResponseTypeError(GameExportError):
|
||||
def __init__(self, game_id, response_type):
|
||||
super().__init__(game_id, "Invalid response type (expected json, got {})".format(
|
||||
response_type, game_id
|
||||
))
|
||||
|
||||
pass
|
||||
|
||||
|
||||
class GameExportInvalidFormatError(GameExportError):
|
||||
def __init__(self, game_id, msg):
|
||||
super().__init__(game_id, "Invalid response format: {}".format(msg))
|
||||
|
||||
|
||||
class GameExportInvalidNumberOfPlayersError(GameExportInvalidFormatError):
|
||||
def __init__(self, game_id, expected, received):
|
||||
super().__init__(
|
||||
game_id,
|
||||
"Received invalid list of players: Expected {} many, got {}".format(expected, received)
|
||||
)
|
||||
|
||||
|
||||
def ensure_users_in_db_and_get_ids(usernames: List[str]):
|
||||
normalized_usernames = [unidecode.unidecode(username) for username in usernames]
|
||||
psycopg2.extras.execute_values(
|
||||
database.cur,
|
||||
"INSERT INTO users (username, normalized_username)"
|
||||
"VALUES %s "
|
||||
"ON CONFLICT (username) DO NOTHING ",
|
||||
zip(usernames, normalized_usernames)
|
||||
)
|
||||
|
||||
# To only do one DB query, we sort by the normalized username.
|
||||
ids = []
|
||||
for username in usernames:
|
||||
database.cur.execute(
|
||||
"SELECT id FROM users "
|
||||
"WHERE username = %s",
|
||||
(username,)
|
||||
)
|
||||
(id, ) = database.cur.fetchone()
|
||||
ids.append(id)
|
||||
|
||||
return ids
|
||||
|
||||
#
|
||||
def detailed_export_game(
|
||||
game_id: int
|
||||
, score: Optional[int] = None
|
||||
, var_id: Optional[int] = None
|
||||
, seed_exists: bool = False
|
||||
) -> None:
|
||||
"""
|
||||
Downloads full details of game from hanab.live, inserts seed and game into DB
|
||||
If seed is already present, it is left as is
|
||||
If game is already present, game details will be updated
|
||||
|
||||
:param game_id: id of game to export
|
||||
:param score: If given, this will be inserted as score of the game. If not given, score is calculated
|
||||
:param var_id: If given, this will be inserted as variant id of the game. If not given, this is looked up
|
||||
:param seed_exists: If specified and true, assumes that the seed is already present in database.
|
||||
If this is not the case, call will raise a DB insertion error
|
||||
|
||||
:raises GameExportError and its child classes
|
||||
"""
|
||||
|
||||
logger.debug("Importing game {}".format(game_id))
|
||||
|
||||
game_json = site_api.get("export/{}".format(game_id))
|
||||
if game_json is None:
|
||||
raise GameExportNoResponseFromSiteError(game_id)
|
||||
if type(game_json) != dict:
|
||||
raise GameExportInvalidResponseTypeError(game_id, type(game_json))
|
||||
|
||||
if game_json.get('id', None) != game_id:
|
||||
raise GameExportInvalidFormatError(game_id, "Unexpected game_id {} received, expected {}".format(
|
||||
game_json.get('id'), game_id
|
||||
))
|
||||
|
||||
players = game_json.get('players', [])
|
||||
num_players = len(players)
|
||||
if num_players < 2:
|
||||
raise GameExportInvalidNumberOfPlayersError(game_id, "≥2", num_players)
|
||||
|
||||
seed = game_json.get('seed', None)
|
||||
if type(seed) != str:
|
||||
raise GameExportInvalidFormatError(game_id, "Unexpected seed, expected string, got {}".format(seed))
|
||||
|
||||
options = game_json.get('options', {})
|
||||
var_id = var_id or variants.variant_id(options.get('variant', 'No Variant'))
|
||||
timed = options.get('timed', False)
|
||||
time_base = options.get('timeBase', 0)
|
||||
time_per_turn = options.get('timePerTurn', 0)
|
||||
speedrun = options.get('speedrun', False)
|
||||
card_cycle = options.get('cardCycle', False)
|
||||
deck_plays = options.get('deckPlays', False)
|
||||
empty_clues = options.get('emptyClues', False)
|
||||
one_extra_card = options.get('oneExtraCard', False)
|
||||
one_less_card = options.get('oneLessCard', False)
|
||||
all_or_nothing = options.get('allOrNothing', False)
|
||||
detrimental_characters = options.get('detrimentalCharacters', False)
|
||||
|
||||
starting_player = options.get('startingPlayer', 0)
|
||||
|
||||
try:
|
||||
actions = [hanab_game.Action.from_json(action) for action in game_json.get('actions', [])]
|
||||
except hanab_game.ParseError as e:
|
||||
raise GameExportInvalidFormatError(game_id, "Failed to parse actions") from e
|
||||
|
||||
try:
|
||||
deck = [hanab_game.DeckCard.from_json(card) for card in game_json.get('deck', None)]
|
||||
except hanab_game.ParseError as e:
|
||||
raise GameExportInvalidFormatError(game_id, "Failed to parse deck") from e
|
||||
|
||||
if score is None:
|
||||
# need to play through the game once to find out its score
|
||||
if detrimental_characters:
|
||||
raise NotImplementedError(
|
||||
"detrimental characters not supported, cannot determine score of game {}".format(game_id)
|
||||
)
|
||||
game = hanab_live.HanabLiveGameState(
|
||||
hanab_live.HanabLiveInstance(
|
||||
deck, num_players, var_id,
|
||||
deck_plays=deck_plays,
|
||||
one_less_card=one_less_card,
|
||||
one_extra_card=one_extra_card,
|
||||
all_or_nothing=all_or_nothing,
|
||||
starting_player=starting_player
|
||||
)
|
||||
)
|
||||
for action in actions:
|
||||
game.make_action(action)
|
||||
score = game.score
|
||||
|
||||
if not seed_exists:
|
||||
database.cur.execute(
|
||||
"INSERT INTO seeds (seed, num_players, starting_player, variant_id)"
|
||||
"VALUES (%s, %s, %s, %s)"
|
||||
"ON CONFLICT (seed) DO NOTHING",
|
||||
(seed, num_players, starting_player, var_id)
|
||||
)
|
||||
logger.debug("New seed {} imported.".format(seed))
|
||||
|
||||
games_db_interface.store_deck_for_seed(seed, deck)
|
||||
|
||||
database.cur.execute(
|
||||
"INSERT INTO games ("
|
||||
"id, num_players, starting_player, variant_id, timed, time_base, time_per_turn, speedrun, card_cycle, "
|
||||
"deck_plays, empty_clues, one_extra_card, one_less_card,"
|
||||
"all_or_nothing, detrimental_characters, seed, score"
|
||||
")"
|
||||
"VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"
|
||||
"ON CONFLICT (id) DO UPDATE SET ("
|
||||
"timed, time_base, time_per_turn, speedrun, card_cycle, deck_plays, empty_clues, one_extra_card,"
|
||||
"all_or_nothing, detrimental_characters"
|
||||
") = ("
|
||||
"EXCLUDED.timed, EXCLUDED.time_base, EXCLUDED.time_per_turn, EXCLUDED.speedrun, EXCLUDED.card_cycle, "
|
||||
"EXCLUDED.deck_plays, EXCLUDED.empty_clues, EXCLUDED.one_extra_card,"
|
||||
"EXCLUDED.all_or_nothing, EXCLUDED.detrimental_characters"
|
||||
")",
|
||||
(
|
||||
game_id, num_players, starting_player, var_id, timed, time_base, time_per_turn, speedrun, card_cycle,
|
||||
deck_plays, empty_clues, one_extra_card, one_less_card,
|
||||
all_or_nothing, detrimental_characters, seed, score
|
||||
)
|
||||
)
|
||||
|
||||
# Insert participants into database
|
||||
ids = ensure_users_in_db_and_get_ids(players)
|
||||
game_participant_values = []
|
||||
for index, user_id in enumerate(ids):
|
||||
game_participant_values.append((game_id, user_id, index))
|
||||
psycopg2.extras.execute_values(
|
||||
database.cur,
|
||||
"INSERT INTO game_participants (game_id, user_id, seat) VALUES %s "
|
||||
"ON CONFLICT (game_id, user_id) DO UPDATE SET seat = excluded.seat",
|
||||
game_participant_values
|
||||
)
|
||||
|
||||
games_db_interface.store_actions(game_id, actions)
|
||||
|
||||
logger.debug("Imported game {}".format(game_id))
|
||||
|
||||
|
||||
def _process_game_row(game: Dict, var_id, export_all_games: bool = False):
|
||||
game_id = game.get('id', None)
|
||||
seed = game.get('seed', None)
|
||||
num_players = game.get('num_players', None)
|
||||
users = game.get('users', "").split(", ")
|
||||
score = game.get('score', None)
|
||||
|
||||
if any(v is None for v in [game_id, seed, num_players, score]):
|
||||
raise ValueError("Unknown response format on hanab.live")
|
||||
|
||||
if len(users) != num_players:
|
||||
logger.error("Invalid number of players reported when processing row {}".format(game))
|
||||
f = platformdirs.user_data_dir(constants.APP_NAME, ensure_exists=True) + '/invalid_game_ids.txt'
|
||||
with open(f, "a+") as invalid_games_file:
|
||||
invalid_games_file.writelines(
|
||||
"{}, {}, {}, {}\n".format(game_id, var_id, num_players, ", ".join(users))
|
||||
)
|
||||
return
|
||||
# raise GameExportInvalidNumberOfPlayersError(game_id, num_players, users)
|
||||
|
||||
# Ensure users in database and find out their ids
|
||||
|
||||
if export_all_games:
|
||||
detailed_export_game(game_id, score=score, var_id=var_id)
|
||||
logger.debug("Imported game {}".format(game_id))
|
||||
return
|
||||
|
||||
database.cur.execute("SAVEPOINT seed_insert")
|
||||
try:
|
||||
database.cur.execute(
|
||||
"INSERT INTO games (id, seed, num_players, score, variant_id)"
|
||||
"VALUES"
|
||||
"(%s, %s ,%s ,%s ,%s)"
|
||||
"ON CONFLICT (id) DO NOTHING",
|
||||
(game_id, seed, num_players, score, var_id)
|
||||
)
|
||||
except psycopg2.errors.ForeignKeyViolation:
|
||||
# Sometimes, seed is not present in the database yet, then we will have to query the full game details
|
||||
# (including the seed) to export it accordingly
|
||||
database.cur.execute("ROLLBACK TO seed_insert")
|
||||
detailed_export_game(game_id, score=score, var_id=var_id)
|
||||
database.cur.execute("RELEASE seed_insert")
|
||||
|
||||
# Insert participants into database
|
||||
ids = ensure_users_in_db_and_get_ids(users)
|
||||
game_participant_values = []
|
||||
for index, user_id in enumerate(ids):
|
||||
game_participant_values.append((game_id, user_id, index))
|
||||
psycopg2.extras.execute_values(
|
||||
database.cur,
|
||||
"INSERT INTO game_participants (game_id, user_id, seat) VALUES %s "
|
||||
"ON CONFLICT (game_id, user_id) DO UPDATE SET seat = excluded.seat",
|
||||
game_participant_values
|
||||
)
|
||||
|
||||
|
||||
logger.debug("Imported game {}".format(game_id))
|
||||
|
||||
|
||||
def download_all_games_not_in_db(download_known_but_not_exported=True):
|
||||
database.cur.execute(
|
||||
"SELECT id FROM games "
|
||||
+ "WHERE actions is not null" if download_known_but_not_exported else ""
|
||||
+ "ORDER BY id"
|
||||
)
|
||||
game_ids = [game_id for (game_id,) in database.cur.fetchall()]
|
||||
largest_game_id = game_ids[-1]
|
||||
with alive_progress.alive_bar(
|
||||
total=largest_game_id - len(game_ids),
|
||||
title='Downloading all games not in database'
|
||||
) as bar:
|
||||
for game_id in range(1, largest_game_id):
|
||||
if game_id == game_ids[0]:
|
||||
game_ids = game_ids[1:]
|
||||
continue
|
||||
try:
|
||||
detailed_export_game(game_id)
|
||||
logger.info("Found new game {} that was not in DB before".format(game_id))
|
||||
bar()
|
||||
except GameExportNoResponseFromSiteError:
|
||||
bar()
|
||||
continue
|
||||
|
||||
|
||||
def download_games(var_id, export_all_games: bool = False):
|
||||
name = variants.variant_name(var_id)
|
||||
page_size = 100
|
||||
if name is None:
|
||||
raise ValueError("{} is not a known variant_id.".format(var_id))
|
||||
|
||||
url = "variants/{}".format(var_id)
|
||||
r = site_api.api(url, refresh=True)
|
||||
if not r:
|
||||
raise RuntimeError("Failed to download request from hanab.live")
|
||||
|
||||
num_entries = r.get('total_rows', None)
|
||||
if num_entries is None:
|
||||
raise ValueError("Unknown response format on hanab.live")
|
||||
|
||||
database.cur.execute(
|
||||
"SELECT COUNT(*) FROM games WHERE variant_id = %s AND id <= "
|
||||
"(SELECT COALESCE (last_game_id, 0) FROM variant_game_downloads WHERE variant_id = %s)",
|
||||
(var_id, var_id)
|
||||
)
|
||||
num_already_downloaded_games = database.cur.fetchone()[0]
|
||||
assert num_already_downloaded_games <= num_entries, "Database inconsistent, too many games present."
|
||||
next_page = num_already_downloaded_games // page_size
|
||||
last_page = (num_entries - 1) // page_size
|
||||
|
||||
if num_already_downloaded_games == num_entries:
|
||||
logger.info("Already downloaded all games ({:6} many) for variant {:4} [{}]".format(num_entries, var_id, name))
|
||||
return
|
||||
|
||||
with alive_progress.alive_bar(
|
||||
total=num_entries - num_already_downloaded_games,
|
||||
title='Downloading remaining games for variant id {:4} [{}]'.format(var_id, name),
|
||||
enrich_print=False
|
||||
) as bar:
|
||||
for page in range(next_page, last_page + 1):
|
||||
for refresh in [False, True]:
|
||||
r = site_api.api(url + "?col[0]=0&page={}".format(page), refresh=(page == last_page) or refresh)
|
||||
rows = r.get('rows', [])
|
||||
if page == next_page:
|
||||
rows = rows[num_already_downloaded_games % 100:]
|
||||
if not (page == last_page or len(rows) == page_size):
|
||||
if not refresh:
|
||||
# row count does not match, maybe this is due to an old cached version of the api query,
|
||||
# try again with a forced refresh of the query
|
||||
logger.verbose("refreshing page {} due to unexpected row count".format(page))
|
||||
continue
|
||||
# If refreshing did not fix the error, log a warning
|
||||
logger.warn('WARN: received unexpected row count ({}, expected {}) on page {}'.format(
|
||||
len(rows), page_size, page)
|
||||
)
|
||||
for row in rows:
|
||||
_process_game_row(row, var_id, export_all_games)
|
||||
bar()
|
||||
database.cur.execute(
|
||||
"INSERT INTO variant_game_downloads (variant_id, last_game_id) VALUES"
|
||||
"(%s, %s)"
|
||||
"ON CONFLICT (variant_id) DO UPDATE SET last_game_id = EXCLUDED.last_game_id",
|
||||
(var_id, r['rows'][-1]['id'])
|
||||
)
|
||||
database.conn.commit()
|
||||
# we need this so that we don't execute the iteration with forced refresh
|
||||
# if stuff already checked out without refreshing
|
||||
break
|
|
@ -1,146 +0,0 @@
|
|||
from typing import List, Dict, Tuple
|
||||
|
||||
from hanabi.hanab_game import Action, ParseError
|
||||
from hanabi import hanab_game
|
||||
from hanabi import constants
|
||||
from hanabi.live import variants
|
||||
|
||||
|
||||
class HanabLiveInstance(hanab_game.HanabiInstance):
|
||||
def __init__(
|
||||
self,
|
||||
deck: List[hanab_game.DeckCard],
|
||||
num_players: int,
|
||||
variant_id: int,
|
||||
one_extra_card: bool = False,
|
||||
one_less_card: bool = False,
|
||||
*args, **kwargs
|
||||
):
|
||||
self.one_extra_card = one_extra_card
|
||||
self.one_less_card = one_less_card
|
||||
assert 2 <= num_players <= 6
|
||||
hand_size = constants.HAND_SIZES[num_players]
|
||||
if one_less_card:
|
||||
hand_size -= 1
|
||||
if one_extra_card:
|
||||
hand_size += 1
|
||||
|
||||
super().__init__(deck, num_players, hand_size=hand_size, *args, **kwargs)
|
||||
self.variant_id = variant_id
|
||||
self.variant = variants.Variant.from_db(self.variant_id)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def select_standard_variant_id(instance: hanab_game.HanabiInstance):
|
||||
err_msg = "Hanabi instance not supported by hanab.live, cannot convert to HanabLiveInstance: "
|
||||
assert 3 <= instance.num_suits <= 6, \
|
||||
err_msg + "Illegal number of suits ({}) found, must be in range [3,6]".format(instance.num_suits)
|
||||
assert 0 <= instance.num_dark_suits <= 2, \
|
||||
err_msg + "Illegal number of dark suits ({}) found, must be in range [0,2]".format(instance.num_dark_suits)
|
||||
assert 4 <= max(instance.num_suits, 4) - instance.num_dark_suits, \
|
||||
err_msg + "Illegal ratio of dark suits to suits, can have at most {} dark suits with {} total suits".format(
|
||||
max(instance.num_suits - 4, 0), instance.num_suits
|
||||
)
|
||||
return constants.VARIANT_IDS_STANDARD_DISTRIBUTIONS[instance.num_suits][instance.num_dark_suits]
|
||||
|
||||
|
||||
def parse_json_game(game_json: Dict, as_hanab_live_instance: bool = True) \
|
||||
-> Tuple[HanabLiveInstance | hanab_game.HanabiInstance, List[Action]]:
|
||||
game_id = game_json.get('id', None)
|
||||
players = game_json.get('players', [])
|
||||
num_players = len(players)
|
||||
if num_players < 2 or num_players > 6:
|
||||
raise ParseError(num_players)
|
||||
|
||||
options = game_json.get('options', {})
|
||||
var_name = options.get('variant', 'No Variant')
|
||||
deck_plays = options.get('deckPlays', False)
|
||||
one_extra_card = options.get('oneExtraCard', False)
|
||||
one_less_card = options.get('oneLessCard', False)
|
||||
all_or_nothing = options.get('allOrNothing', False)
|
||||
starting_player = options.get('startingPlayer', 0)
|
||||
detrimental_characters = options.get('detrimentalCharacters', False)
|
||||
|
||||
try:
|
||||
actions = [hanab_game.Action.from_json(action) for action in game_json.get('actions', [])]
|
||||
except hanab_game.ParseError as e:
|
||||
raise ParseError("Failed to parse actions") from e
|
||||
|
||||
try:
|
||||
deck = [hanab_game.DeckCard.from_json(card) for card in game_json.get('deck', None)]
|
||||
except hanab_game.ParseError as e:
|
||||
raise ParseError("Failed to parse deck") from e
|
||||
|
||||
if detrimental_characters:
|
||||
raise NotImplementedError(
|
||||
"detrimental characters not supported, cannot determine score of game {}".format(game_id)
|
||||
)
|
||||
if as_hanab_live_instance:
|
||||
var_id = variants.variant_id(var_name)
|
||||
return HanabLiveInstance(
|
||||
deck, num_players, var_id,
|
||||
deck_plays=deck_plays,
|
||||
one_less_card=one_less_card,
|
||||
one_extra_card=one_extra_card,
|
||||
all_or_nothing=all_or_nothing,
|
||||
starting_player=starting_player
|
||||
), actions
|
||||
else:
|
||||
hand_size = constants.HAND_SIZES[num_players]
|
||||
if one_less_card:
|
||||
hand_size -= 1
|
||||
if one_extra_card:
|
||||
hand_size += 1
|
||||
|
||||
clue_starved = 'Clue Starved' in var_name
|
||||
|
||||
return hanab_game.HanabiInstance(
|
||||
deck, num_players, hand_size,
|
||||
clue_starved=clue_starved,
|
||||
deck_plays=deck_plays,
|
||||
all_or_nothing=all_or_nothing,
|
||||
starting_player=starting_player
|
||||
), actions
|
||||
|
||||
|
||||
|
||||
class HanabLiveGameState(hanab_game.GameState):
|
||||
def __init__(self, instance: HanabLiveInstance):
|
||||
super().__init__(instance)
|
||||
self.instance: HanabLiveInstance = instance
|
||||
|
||||
def to_json(self):
|
||||
return {
|
||||
"actions": [action.to_json() for action in self.actions],
|
||||
"deck": [card.to_json() for card in self.deck],
|
||||
"players": ["Alice", "Bob", "Cathy", "Donald", "Emily", "Frank"][:self.num_players],
|
||||
"notes": [[]] * self.num_players,
|
||||
"options": {
|
||||
"variant": self.instance.variant_id,
|
||||
"deckPlays": self.instance.deck_plays,
|
||||
"oneExtraCard": self.instance.one_extra_card,
|
||||
"oneLessCard": self.instance.one_less_card,
|
||||
"allOrNothing": self.instance.all_or_nothing,
|
||||
"startingPlayer": self.instance.starting_player
|
||||
}
|
||||
}
|
||||
|
||||
def _waste_clue(self) -> hanab_game.Action:
|
||||
for player in range(self.turn + 1, self.turn + self.num_players):
|
||||
for card in self.hands[player % self.num_players]:
|
||||
for rank in self.instance.variant.ranks:
|
||||
if self.instance.variant.rank_touches(card, rank):
|
||||
return hanab_game.Action(
|
||||
hanab_game.ActionType.RankClue,
|
||||
player % self.num_players,
|
||||
rank
|
||||
)
|
||||
for color in range(self.instance.variant.num_colors):
|
||||
if self.instance.variant.color_touches(card, color):
|
||||
return hanab_game.Action(
|
||||
hanab_game.ActionType.ColorClue,
|
||||
player % self.num_players,
|
||||
color
|
||||
)
|
||||
raise RuntimeError("Current game state did not permit any legal clue."
|
||||
"This case is incredibly rare and currently not handled.")
|
|
@ -1,184 +0,0 @@
|
|||
from typing import Optional
|
||||
import pebble.concurrent
|
||||
import concurrent.futures
|
||||
|
||||
import traceback
|
||||
import alive_progress
|
||||
import threading
|
||||
import time
|
||||
|
||||
from hanabi import logger
|
||||
from hanabi.solvers.sat import solve_sat
|
||||
from hanabi import database
|
||||
from hanabi.live import download_data
|
||||
from hanabi.live import compress
|
||||
from hanabi import hanab_game
|
||||
from hanabi.solvers import greedy_solver
|
||||
from hanabi.solvers import deck_analyzer
|
||||
from hanabi.live import variants
|
||||
|
||||
MAX_PROCESSES = 6
|
||||
|
||||
|
||||
def update_trivially_feasible_games(variant_id):
|
||||
variant: variants.Variant = variants.Variant.from_db(variant_id)
|
||||
database.cur.execute("SELECT seed FROM seeds WHERE variant_id = (%s) AND feasible is null", (variant_id,))
|
||||
seeds = database.cur.fetchall()
|
||||
logger.verbose('Checking variant {} (id {}), found {} seeds to check...'.format(variant.name, variant_id, len(seeds)))
|
||||
|
||||
with alive_progress.alive_bar(total=len(seeds), title='{} ({})'.format(variant.name, variant_id)) as bar:
|
||||
for (seed,) in seeds:
|
||||
database.cur.execute(
|
||||
"SELECT id, deck_plays, one_extra_card, one_less_card, all_or_nothing, detrimental_characters "
|
||||
"FROM games WHERE score = (%s) AND seed = (%s) ORDER BY id;",
|
||||
(variant.max_score, seed)
|
||||
)
|
||||
res = database.cur.fetchall()
|
||||
logger.debug("Checking seed {}: {:3} results".format(seed, len(res)))
|
||||
for (game_id, a, b, c, d, e) in res:
|
||||
if None in [a, b, c, d, e]:
|
||||
logger.debug(' Game {} not found in database, exporting...'.format(game_id))
|
||||
download_data.detailed_export_game(
|
||||
game_id, var_id=variant_id, score=variant.max_score, seed_exists=True
|
||||
)
|
||||
database.cur.execute("SELECT deck_plays, one_extra_card, one_less_card, all_or_nothing, "
|
||||
"detrimental_characters "
|
||||
"FROM games WHERE id = (%s)",
|
||||
(game_id,))
|
||||
(a, b, c, d, e) = database.cur.fetchone()
|
||||
else:
|
||||
logger.debug(' Game {} already in database'.format(game_id))
|
||||
valid = not any([a, b, c, d, e])
|
||||
if valid:
|
||||
print(a, b, c, d, e)
|
||||
logger.verbose(
|
||||
'Seed {:10} (variant {}) found to be feasible via game {:6}'.format(seed, variant_id, game_id))
|
||||
database.cur.execute("UPDATE seeds SET (feasible, max_score_theoretical) = (%s, %s) WHERE seed = "
|
||||
"(%s)", (True, variant.max_score, seed))
|
||||
database.cur.execute(
|
||||
"INSERT INTO score_lower_bounds (seed, score_lower_bound, game_id) VALUES (%s, %s, %s)",
|
||||
(seed, variant.max_score, game_id)
|
||||
)
|
||||
database.conn.commit()
|
||||
break
|
||||
else:
|
||||
logger.verbose(' Cheaty game {} found'.format(game_id))
|
||||
bar()
|
||||
|
||||
|
||||
def get_decks_for_all_seeds():
|
||||
cur = database.conn.database.cursor()
|
||||
cur.execute("SELECT id "
|
||||
"FROM games "
|
||||
" INNER JOIN seeds "
|
||||
" ON seeds.seed = games.seed"
|
||||
" WHERE"
|
||||
" seeds.deck is null"
|
||||
" AND"
|
||||
" games.id = ("
|
||||
" SELECT id FROM games WHERE games.seed = seeds.seed LIMIT 1"
|
||||
" )"
|
||||
)
|
||||
print("Exporting decks for all seeds")
|
||||
res = cur.fetchall()
|
||||
with alive_progress.alive_bar(len(res), title="Exporting decks") as bar:
|
||||
for (game_id,) in res:
|
||||
download_data.detailed_export_game(game_id)
|
||||
bar()
|
||||
|
||||
|
||||
mutex = threading.Lock()
|
||||
|
||||
|
||||
def solve_instance(instance: hanab_game.HanabiInstance):
|
||||
# first, sanity check on running out of pace
|
||||
result = deck_analyzer.analyze(instance)
|
||||
if len(result) != 0:
|
||||
logger.info("found infeasible deck by foreward analysis")
|
||||
return False, None, None
|
||||
for num_remaining_cards in [0, 20]:
|
||||
# logger.info("trying with {} remaining cards".format(num_remaining_cards))
|
||||
game = hanab_game.GameState(instance)
|
||||
strat = greedy_solver.GreedyStrategy(game)
|
||||
|
||||
# make a number of greedy moves
|
||||
while not game.is_over() and not game.is_known_lost():
|
||||
if num_remaining_cards != 0 and game.progress == game.deck_size - num_remaining_cards:
|
||||
break # stop solution here
|
||||
strat.make_move()
|
||||
|
||||
# check if we won already
|
||||
if game.is_won():
|
||||
# print("won with greedy strat")
|
||||
return True, game, num_remaining_cards
|
||||
|
||||
# now, apply sat solver
|
||||
if not game.is_over():
|
||||
logger.debug("continuing greedy sol with SAT")
|
||||
solvable, sol = solve_sat(game)
|
||||
if solvable is None:
|
||||
return True, sol, num_remaining_cards
|
||||
logger.debug(
|
||||
"No success with {} remaining cards, reducing number of greedy moves, failed attempt was: {}".format(
|
||||
num_remaining_cards, compress.link(game)))
|
||||
# print("Aborting trying with greedy strat")
|
||||
logger.debug("Starting full SAT solver")
|
||||
game = hanab_game.GameState(instance)
|
||||
a, b = solve_sat(game)
|
||||
return a, b, instance.draw_pile_size
|
||||
|
||||
|
||||
@pebble.concurrent.process(timeout=150)
|
||||
def solve_seed_with_timeout(seed, num_players, deck_compressed, var_name: Optional[str] = None):
|
||||
try:
|
||||
logger.verbose("Starting to solve seed {}".format(seed))
|
||||
deck = compress.decompress_deck(deck_compressed)
|
||||
t0 = time.perf_counter()
|
||||
solvable, solution, num_remaining_cards = solve_instance(hanab_game.HanabiInstance(deck, num_players))
|
||||
t1 = time.perf_counter()
|
||||
logger.verbose("Solved instance {} in {} seconds: {}".format(seed, round(t1 - t0, 2), solvable))
|
||||
|
||||
mutex.acquire()
|
||||
if solvable is not None:
|
||||
database.cur.execute("UPDATE seeds SET feasible = (%s) WHERE seed = (%s)", (solvable, seed))
|
||||
database.conn.commit()
|
||||
mutex.release()
|
||||
|
||||
if solvable == True:
|
||||
logger.verbose("Success with {} cards left in draw by greedy solver on seed {}: {}\n".format(
|
||||
num_remaining_cards, seed, compress.link(solution))
|
||||
)
|
||||
elif solvable == False:
|
||||
logger.debug("seed {} was not solvable".format(seed))
|
||||
logger.debug('{}-player, seed {:10}, {}\n'.format(num_players, seed, var_name))
|
||||
elif solvable is None:
|
||||
logger.verbose("seed {} skipped".format(seed))
|
||||
else:
|
||||
raise Exception("Programming Error")
|
||||
|
||||
except Exception as e:
|
||||
print("exception in subprocess:")
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
def solve_seed(seed, num_players, deck_compressed, var_name: Optional[str] = None):
|
||||
f = solve_seed_with_timeout(seed, num_players, deck_compressed, var_name)
|
||||
try:
|
||||
return f.result()
|
||||
except TimeoutError:
|
||||
logger.verbose("Solving on seed {} timed out".format(seed))
|
||||
return
|
||||
|
||||
|
||||
def solve_unknown_seeds(variant_id, variant_name: Optional[str] = None):
|
||||
database.cur.execute(
|
||||
"SELECT seed, num_players, deck FROM seeds WHERE variant_id = (%s) AND feasible IS NULL",
|
||||
(variant_id,)
|
||||
)
|
||||
res = database.cur.fetchall()
|
||||
|
||||
with concurrent.futures.ProcessPoolExecutor(max_workers=MAX_PROCESSES) as executor:
|
||||
fs = [executor.submit(solve_seed, r[0], r[1], r[2], variant_name) for r in res]
|
||||
with alive_progress.alive_bar(len(res), title='Seed solving on {}'.format(variant_name)) as bar:
|
||||
for f in concurrent.futures.as_completed(fs):
|
||||
bar()
|
|
@ -1,195 +0,0 @@
|
|||
from enum import Enum
|
||||
from typing import List
|
||||
|
||||
import alive_progress
|
||||
|
||||
from hanabi import database
|
||||
from hanabi import logger
|
||||
from hanabi import hanab_game
|
||||
from hanabi.live import compress
|
||||
|
||||
|
||||
class InfeasibilityType(Enum):
|
||||
OutOfPace = 0 # idx denotes index of last card drawn before being forced to reduce pace, value denotes how bad pace is
|
||||
OutOfHandSize = 1 # idx denotes index of last card drawn before being forced to discard a crit
|
||||
CritAtBottom = 3
|
||||
|
||||
|
||||
class InfeasibilityReason:
|
||||
def __init__(self, infeasibility_type: InfeasibilityType, score_upper_bound, value=None):
|
||||
self.type = infeasibility_type
|
||||
self.score_upper_bound = score_upper_bound
|
||||
self.value = value
|
||||
|
||||
def __repr__(self):
|
||||
match self.type:
|
||||
case InfeasibilityType.OutOfPace:
|
||||
return "Upper bound {}, since deck runs out of pace after drawing card {}".format(self.score_upper_bound, self.value)
|
||||
case InfeasibilityType.OutOfHandSize:
|
||||
return "Upper bound {}, since deck runs out of hand size after drawing card {}".format(self.score_upper_bound, self.value)
|
||||
case InfeasibilityType.CritAtBottom:
|
||||
return "Upper bound {}, sicne deck has critical non-5 at bottom".format(self.score_upper_bound)
|
||||
|
||||
|
||||
def analyze(instance: hanab_game.HanabiInstance, only_find_first=False) -> List[InfeasibilityReason]:
|
||||
"""
|
||||
Checks instance for the following (easy) certificates for unfeasibility
|
||||
- There is a critical non-5 at the bottom
|
||||
- We necessarily run out of pace when playing this deck:
|
||||
At some point, among all drawn cards, there are too few playable ones so that the next discard
|
||||
reduces pace to a negative amount
|
||||
- We run out of hand size when playing this deck:
|
||||
At some point, there are too many critical cards (that also could not have been played) for the players
|
||||
to hold collectively
|
||||
:param instance: Instance to be analyzed
|
||||
:param only_find_first: If true, we immediately return when finding the first infeasibility reason and don't
|
||||
check for further ones. Might be slightly faster on some instances, especially dark ones.
|
||||
:return: List with all reasons found. Empty if none is found.
|
||||
In particular, if return value is not the empty list, the analyzed instance is unfeasible
|
||||
"""
|
||||
reasons = []
|
||||
|
||||
# check for critical non-fives at bottom of the deck
|
||||
bottom_card = instance.deck[-1]
|
||||
if bottom_card.rank != 5 and bottom_card.suitIndex in instance.dark_suits:
|
||||
reasons.append(InfeasibilityReason(
|
||||
InfeasibilityType.CritAtBottom,
|
||||
instance.max_score - 5 + bottom_card.rank,
|
||||
instance.deck_size - 1
|
||||
))
|
||||
if only_find_first:
|
||||
return reasons
|
||||
|
||||
# we will sweep through the deck and pretend that
|
||||
# - we keep all non-trash cards in our hands
|
||||
# - we instantly play all playable cards as soon as we have them
|
||||
# - we recurse on this instant-play
|
||||
#
|
||||
# For example, we assume that once we draw r2, we check if we can play r2.
|
||||
# If yes, then we also check if we drew r3 earlier and so on.
|
||||
# If not, then we keep r2 in our hands
|
||||
#
|
||||
# In total, this is equivalent to assuming that we infinitely many clues
|
||||
# and infinite storage space in our hands (which is of course not true),
|
||||
# but even in this setting, some games are infeasible due to pace issues
|
||||
# that we can detect
|
||||
#
|
||||
# A small refinement is to pretend that we only have infinite storage for non-crit cards,
|
||||
# for crit-cards, the usual hand card limit applies.
|
||||
# This allows us to detect some seeds where there are simply too many unplayable cards to hold at some point
|
||||
# that also can't be discarded
|
||||
# this allows us to detect standard pace issue arguments
|
||||
|
||||
stacks = [0] * instance.num_suits
|
||||
|
||||
# we will ensure that stored_crits is a subset of stored_cards
|
||||
stored_cards = set()
|
||||
stored_crits = set()
|
||||
|
||||
min_forced_pace = instance.initial_pace
|
||||
worst_pace_index = 0
|
||||
|
||||
max_forced_crit_discard = 0
|
||||
worst_crit_index = 0
|
||||
|
||||
for (i, card) in enumerate(instance.deck):
|
||||
if card.rank == stacks[card.suitIndex] + 1:
|
||||
# card is playable
|
||||
stacks[card.suitIndex] += 1
|
||||
# check for further playables that we stored
|
||||
for check_rank in range(card.rank + 1, 6):
|
||||
check_card = hanab_game.DeckCard(card.suitIndex, check_rank)
|
||||
if check_card in stored_cards:
|
||||
stacks[card.suitIndex] += 1
|
||||
stored_cards.remove(check_card)
|
||||
if check_card in stored_crits:
|
||||
stored_crits.remove(check_card)
|
||||
else:
|
||||
break
|
||||
elif card.rank <= stacks[card.suitIndex]:
|
||||
pass # card is trash
|
||||
elif card.rank > stacks[card.suitIndex] + 1:
|
||||
# need to store card
|
||||
if card in stored_cards or card.rank == 5:
|
||||
stored_crits.add(card)
|
||||
stored_cards.add(card)
|
||||
|
||||
# check for out of handsize (this number can be negative, in which case nothing applies)
|
||||
# Note the +1 at the end, which is there because we have to discard next,
|
||||
# so even if we currently have as many crits as we can hold, we have to discard one
|
||||
num_forced_crit_discards = len(stored_crits) - instance.num_players * instance.hand_size + 1
|
||||
if len(stored_crits) - instance.num_players * instance.hand_size > max_forced_crit_discard:
|
||||
worst_crit_index = i
|
||||
max_forced_crit_discard = num_forced_crit_discards
|
||||
if only_find_first:
|
||||
reasons.append(InfeasibilityReason(
|
||||
InfeasibilityType.OutOfPace,
|
||||
instance.max_score + min_forced_pace,
|
||||
worst_pace_index
|
||||
))
|
||||
return reasons
|
||||
|
||||
# the last - 1 is there because we have to discard 'next', causing a further draw
|
||||
max_remaining_plays = (instance.deck_size - i - 1) + instance.num_players - 1
|
||||
needed_plays = instance.max_score - sum(stacks)
|
||||
cur_pace = max_remaining_plays - needed_plays
|
||||
if cur_pace < min(0, min_forced_pace):
|
||||
min_forced_pace = cur_pace
|
||||
worst_pace_index = i
|
||||
if only_find_first:
|
||||
reasons.append(InfeasibilityReason(
|
||||
InfeasibilityType.OutOfPace,
|
||||
instance.max_score + min_forced_pace,
|
||||
worst_pace_index
|
||||
))
|
||||
return reasons
|
||||
|
||||
# check that we correctly walked through the deck
|
||||
assert (len(stored_cards) == 0)
|
||||
assert (len(stored_crits) == 0)
|
||||
assert (sum(stacks) == instance.max_score)
|
||||
|
||||
if max_forced_crit_discard > 0:
|
||||
reasons.append(
|
||||
InfeasibilityReason(
|
||||
InfeasibilityType.OutOfHandSize,
|
||||
instance.max_score - max_forced_crit_discard,
|
||||
worst_crit_index
|
||||
)
|
||||
)
|
||||
|
||||
if min_forced_pace < 0:
|
||||
reasons.append(InfeasibilityReason(
|
||||
InfeasibilityType.OutOfPace,
|
||||
instance.max_score + min_forced_pace,
|
||||
worst_pace_index
|
||||
))
|
||||
|
||||
return reasons
|
||||
|
||||
|
||||
def run_on_database(variant_id):
|
||||
database.cur.execute(
|
||||
"SELECT seed, num_players, deck FROM seeds WHERE variant_id = (%s) ORDER BY (num_players, seed)",
|
||||
(variant_id,)
|
||||
)
|
||||
res = database.cur.fetchall()
|
||||
logger.verbose("Checking {} seeds of variant {} for infeasibility".format(len(res), variant_id))
|
||||
with alive_progress.alive_bar(total=len(res), title='Check for infeasibility reasons in var {}'.format(variant_id)) as bar:
|
||||
for (seed, num_players, deck_str) in res:
|
||||
deck = compress.decompress_deck(deck_str)
|
||||
reasons = analyze(hanab_game.HanabiInstance(deck, num_players))
|
||||
for reason in reasons:
|
||||
database.cur.execute(
|
||||
"INSERT INTO score_upper_bounds (seed, score_upper_bound, reason) "
|
||||
"VALUES (%s,%s,%s) "
|
||||
"ON CONFLICT (seed, reason) DO UPDATE "
|
||||
"SET score_upper_bound = EXCLUDED.score_upper_bound",
|
||||
(seed, reason.score_upper_bound, reason.type.value)
|
||||
)
|
||||
database.cur.execute(
|
||||
"UPDATE seeds SET feasible = (%s) WHERE seed = (%s)",
|
||||
(False, seed)
|
||||
)
|
||||
bar()
|
||||
database.conn.commit()
|
|
@ -1,372 +0,0 @@
|
|||
import copy
|
||||
from typing import Optional, Tuple
|
||||
|
||||
from pysmt.shortcuts import Symbol, Bool, Not, Implies, Iff, And, Or, AtMostOne, get_model, Equals, GE, NotEquals, Int
|
||||
from pysmt.typing import INT
|
||||
|
||||
from hanabi import logger
|
||||
from hanabi import constants
|
||||
from hanabi import hanab_game
|
||||
|
||||
|
||||
# literals to model game as sat instance to check for feasibility
|
||||
# variants 'throw it in a hole not handled', 'clue starved' and 'up or down' currently not handled
|
||||
class Literals():
|
||||
# num_suits is total number of suits, i.e. also counts the dark suits
|
||||
# default distribution among all suits is assumed
|
||||
def __init__(self, instance: hanab_game.HanabiInstance):
|
||||
# clues[m][i] == "after move m we have i clues", in clue starved, this counts half clues
|
||||
self.clues = {
|
||||
-1: Int(16 if instance.clue_starved else 8) # we have 8 clues after turn
|
||||
, **{
|
||||
m: Symbol('m{}clues'.format(m), INT)
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
self.pace = {
|
||||
-1: Int(instance.initial_pace)
|
||||
, **{
|
||||
m: Symbol('m{}pace'.format(m), INT)
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# strikes[m][i] == "after move m we have at least i strikes"
|
||||
self.strikes = {
|
||||
-1: {i: Bool(i == 0) for i in range(0, instance.num_strikes + 1)} # no strikes when we start
|
||||
, **{
|
||||
m: {
|
||||
0: Bool(True),
|
||||
**{s: Symbol('m{}strikes{}'.format(m, s)) for s in range(1, instance.num_strikes)},
|
||||
instance.num_strikes: Bool(False)
|
||||
# never so many clues that we lose. Implicitly forbids striking out
|
||||
}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# extraturn[m] = "turn m is a move part of the extra round or a dummy turn"
|
||||
self.extraround = {
|
||||
-1: Bool(False)
|
||||
, **{
|
||||
m: Bool(False) if m < instance.draw_pile_size else Symbol('m{}extra'.format(m))
|
||||
# it takes at least as many turns as cards in the draw pile to start the extra round
|
||||
for m in range(0, instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# dummyturn[m] = "turn m is a dummy nurn and not actually part of the game"
|
||||
self.dummyturn = {
|
||||
-1: Bool(False)
|
||||
, **{
|
||||
m: Bool(False) if m < instance.draw_pile_size + instance.num_players else Symbol('m{}dummy'.format(m))
|
||||
for m in range(0, instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# draw[m][i] == "at move m we play/discard deck[i]"
|
||||
self.discard = {
|
||||
m: {i: Symbol('m{}discard{}'.format(m, i)) for i in range(instance.deck_size)}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
|
||||
# draw[m][i] == "at move m we draw deck card i"
|
||||
self.draw = {
|
||||
-1: {i: Bool(i == instance.num_dealt_cards - 1) for i in
|
||||
range(instance.num_dealt_cards - 1, instance.deck_size)}
|
||||
, **{
|
||||
m: {
|
||||
instance.num_dealt_cards - 1: Bool(False),
|
||||
**{i: Symbol('m{}draw{}'.format(m, i)) for i in range(instance.num_dealt_cards, instance.deck_size)}
|
||||
}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# strike[m] = "at move m we get a strike"
|
||||
self.strike = {
|
||||
-1: Bool(False)
|
||||
, **{
|
||||
m: Symbol('m{}newstrike'.format(m))
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
# progress[m][card = (suitIndex, rank)] == "after move m we have played in suitIndex up to rank"
|
||||
self.progress = {
|
||||
-1: {(s, r): Bool(r == 0) for s in range(0, instance.num_suits) for r in range(0, 6)}
|
||||
# at start, have only played rank zero
|
||||
, **{
|
||||
m: {
|
||||
**{(s, 0): Bool(True) for s in range(0, instance.num_suits)},
|
||||
**{(s, r): Symbol('m{}progress{}{}'.format(m, s, r)) for s in range(0, instance.num_suits) for r in
|
||||
range(1, 6)}
|
||||
}
|
||||
for m in range(instance.max_winning_moves)
|
||||
}
|
||||
}
|
||||
|
||||
## Utility variables
|
||||
|
||||
# discard_any[m] == "at move m we play/discard a card"
|
||||
self.discard_any = {m: Symbol('m{}discard_any'.format(m)) for m in range(instance.max_winning_moves)}
|
||||
|
||||
# draw_any[m] == "at move m we draw a card"
|
||||
self.draw_any = {m: Symbol('m{}draw_any'.format(m)) for m in range(instance.max_winning_moves)}
|
||||
|
||||
# play[m] == "at move m we play a card"
|
||||
self.play = {m: Symbol('m{}play'.format(m)) for m in range(instance.max_winning_moves)}
|
||||
|
||||
# play5[m] == "at move m we play a 5"
|
||||
self.play5 = {m: Symbol('m{}play5'.format(m)) for m in range(instance.max_winning_moves)}
|
||||
|
||||
# incr_clues[m] == "at move m we obtain a clue"
|
||||
self.incr_clues = {m: Symbol('m{}c+'.format(m)) for m in range(instance.max_winning_moves)}
|
||||
|
||||
|
||||
def solve_sat(starting_state: hanab_game.GameState | hanab_game.HanabiInstance, min_pace: Optional[int] = 0) -> Tuple[
|
||||
bool, Optional[hanab_game.GameState]]:
|
||||
if isinstance(starting_state, hanab_game.HanabiInstance):
|
||||
instance = starting_state
|
||||
game_state = hanab_game.GameState(instance)
|
||||
elif isinstance(starting_state, hanab_game.GameState):
|
||||
instance = starting_state.instance
|
||||
game_state = starting_state
|
||||
else:
|
||||
raise ValueError("Bad argument type")
|
||||
|
||||
ls = Literals(instance)
|
||||
|
||||
##### setup of initial game state
|
||||
|
||||
# properties used later to model valid moves
|
||||
|
||||
starting_hands = [[card.deck_index for card in hand] for hand in game_state.hands]
|
||||
first_turn = len(game_state.actions)
|
||||
|
||||
if isinstance(starting_state, hanab_game.GameState):
|
||||
# have to set additional variables
|
||||
|
||||
# set initial clues
|
||||
for i in range(0, 10):
|
||||
ls.clues[first_turn - 1] = Int(game_state.clues)
|
||||
|
||||
# set initial pace
|
||||
ls.pace[first_turn - 1] = Int(game_state.pace)
|
||||
|
||||
# set initial strikes
|
||||
for i in range(0, instance.num_strikes + 1):
|
||||
ls.strikes[first_turn - 1][i] = Bool(i <= game_state.strikes)
|
||||
|
||||
# check if extraround has started (usually not)
|
||||
ls.extraround[first_turn - 1] = Bool(game_state.remaining_extra_turns < game_state.num_players)
|
||||
ls.dummyturn[first_turn - 1] = Bool(False)
|
||||
|
||||
# set recent draws: important to model progress
|
||||
# we just pretend that the last card drawn was in fact drawn last turn,
|
||||
# regardless of when it was actually drawn
|
||||
for neg_turn in range(1, min(9, first_turn + 2)):
|
||||
for i in range(instance.num_players * instance.hand_size, instance.deck_size):
|
||||
ls.draw[first_turn - neg_turn][i] = Bool(neg_turn == 1 and i == game_state.progress - 1)
|
||||
# forbid re-drawing of the last card drawn
|
||||
for m in range(first_turn, instance.max_winning_moves):
|
||||
ls.draw[m][game_state.progress - 1] = Bool(False)
|
||||
|
||||
# model initial progress
|
||||
for s in range(0, game_state.num_suits):
|
||||
for r in range(0, 6):
|
||||
ls.progress[first_turn - 1][s, r] = Bool(r <= game_state.stacks[s])
|
||||
|
||||
### Now, model all valid moves
|
||||
|
||||
valid_move = lambda m: And(
|
||||
# in dummy turns, nothing can be discarded
|
||||
Implies(ls.dummyturn[m], Not(ls.discard_any[m])),
|
||||
|
||||
# definition of discard_any
|
||||
Iff(ls.discard_any[m], Or(ls.discard[m][i] for i in range(instance.deck_size))),
|
||||
|
||||
# definition of draw_any
|
||||
Iff(ls.draw_any[m], Or(ls.draw[m][i] for i in range(game_state.progress, instance.deck_size))),
|
||||
|
||||
# ls.draw implies ls.discard (and converse true before the ls.extraround)
|
||||
Implies(ls.draw_any[m], ls.discard_any[m]),
|
||||
Implies(ls.discard_any[m], Or(ls.extraround[m], ls.draw_any[m])),
|
||||
|
||||
# ls.play requires ls.discard
|
||||
Implies(ls.play[m], ls.discard_any[m]),
|
||||
|
||||
# definition of ls.play5
|
||||
Iff(ls.play5[m],
|
||||
And(ls.play[m], Or(ls.discard[m][i] for i in range(instance.deck_size) if instance.deck[i].rank == 5))),
|
||||
|
||||
# definition of ls.incr_clues
|
||||
Iff(ls.incr_clues[m],
|
||||
And(ls.discard_any[m], NotEquals(ls.clues[m - 1], Int(16 if instance.clue_starved else 8)),
|
||||
Implies(ls.play[m], ls.play5[m]))),
|
||||
|
||||
# change of ls.clues
|
||||
Implies(And(Not(ls.discard_any[m]), Not(ls.dummyturn[m])),
|
||||
Equals(ls.clues[m], ls.clues[m - 1] - (2 if instance.clue_starved else 1))),
|
||||
Implies(ls.incr_clues[m], Equals(ls.clues[m], ls.clues[m - 1] + 1)),
|
||||
Implies(And(Or(ls.discard_any[m], ls.dummyturn[m]), Not(ls.incr_clues[m])),
|
||||
Equals(ls.clues[m], ls.clues[m - 1])),
|
||||
|
||||
# change of pace
|
||||
Implies(And(ls.discard_any[m], Or(ls.strike[m], Not(ls.play[m]))), Equals(ls.pace[m], ls.pace[m - 1] - 1)),
|
||||
Implies(Or(Not(ls.discard_any[m]), And(Not(ls.strike[m]), ls.play[m])), Equals(ls.pace[m], ls.pace[m - 1])),
|
||||
|
||||
# pace is nonnegative
|
||||
GE(ls.pace[m], Int(min_pace)),
|
||||
|
||||
## more than 8 clues not allowed, ls.discarding produces a strike
|
||||
# Note that this means that we will never strike while not at 8 clues.
|
||||
# It's easy to see that if there is any solution to the instance, then there is also one where we only strike at 8 clues
|
||||
# (or not at all) -> Just strike later if neccessary
|
||||
# So, we decrease the solution space with this formulation, but do not change whether it's empty or not
|
||||
Iff(ls.strike[m],
|
||||
And(ls.discard_any[m], Not(ls.play[m]), Equals(ls.clues[m - 1], Int(16 if instance.clue_starved else 8)))),
|
||||
|
||||
# change of strikes
|
||||
*[Iff(ls.strikes[m][i], Or(ls.strikes[m - 1][i], And(ls.strikes[m - 1][i - 1], ls.strike[m]))) for i in
|
||||
range(1, instance.num_strikes + 1)],
|
||||
|
||||
# less than 0 clues not allowed
|
||||
Implies(Not(ls.discard_any[m]), Or(GE(ls.clues[m - 1], Int(1)), ls.dummyturn[m])),
|
||||
|
||||
# we can only draw card i if the last ls.drawn card was i-1
|
||||
*[Implies(ls.draw[m][i], Or(
|
||||
And(ls.draw[m0][i - 1], *[Not(ls.draw_any[m1]) for m1 in range(m0 + 1, m)]) for m0 in
|
||||
range(max(first_turn - 1, m - 9), m))) for i in range(game_state.progress, instance.deck_size)],
|
||||
|
||||
# we can only draw at most one card (NOTE: redundant, FIXME: avoid quadratic formula)
|
||||
AtMostOne(ls.draw[m][i] for i in range(game_state.progress, instance.deck_size)),
|
||||
|
||||
# we can only discard a card if we drew it earlier...
|
||||
*[Implies(ls.discard[m][i],
|
||||
Or(ls.draw[m0][i] for m0 in range(m - instance.num_players, first_turn - 1, -instance.num_players)))
|
||||
for i in range(game_state.progress, instance.deck_size)],
|
||||
|
||||
# ...or if it was part of the initial hand
|
||||
*[Not(ls.discard[m][i]) for i in range(0, game_state.progress) if
|
||||
i not in starting_hands[m % instance.num_players]],
|
||||
|
||||
# we can only discard a card if we did not discard it yet
|
||||
*[Implies(ls.discard[m][i], And(
|
||||
Not(ls.discard[m0][i]) for m0 in range(m - instance.num_players, first_turn - 1, -instance.num_players)))
|
||||
for i in range(instance.deck_size)],
|
||||
|
||||
# we can only discard at most one card (FIXME: avoid quadratic formula)
|
||||
AtMostOne(ls.discard[m][i] for i in range(instance.deck_size)),
|
||||
|
||||
# we can only play a card if it matches the progress
|
||||
*[Implies(
|
||||
And(ls.discard[m][i], ls.play[m]),
|
||||
And(
|
||||
Not(ls.progress[m - 1][instance.deck[i].suitIndex, instance.deck[i].rank]),
|
||||
ls.progress[m - 1][instance.deck[i].suitIndex, instance.deck[i].rank - 1]
|
||||
)
|
||||
)
|
||||
for i in range(instance.deck_size)
|
||||
],
|
||||
|
||||
# change of progress
|
||||
*[
|
||||
Iff(
|
||||
ls.progress[m][s, r],
|
||||
Or(
|
||||
ls.progress[m - 1][s, r],
|
||||
And(ls.play[m], Or(ls.discard[m][i]
|
||||
for i in range(0, instance.deck_size)
|
||||
if instance.deck[i] == hanab_game.DeckCard(s, r)))
|
||||
)
|
||||
)
|
||||
for s in range(0, instance.num_suits)
|
||||
for r in range(1, 6)
|
||||
],
|
||||
|
||||
# extra round bool
|
||||
Iff(ls.extraround[m], Or(ls.extraround[m - 1], ls.draw[m - 1][instance.deck_size - 1])),
|
||||
|
||||
# dummy turn bool
|
||||
*[Iff(ls.dummyturn[m], Or(ls.dummyturn[m - 1], ls.draw[m - 1 - instance.num_players][instance.deck_size - 1]))
|
||||
for i in range(0, 1) if m >= instance.num_players]
|
||||
)
|
||||
|
||||
win = And(
|
||||
# maximum progress at each color
|
||||
*[ls.progress[instance.max_winning_moves - 1][s, 5] for s in range(0, instance.num_suits)],
|
||||
|
||||
# played every color/value combination (NOTE: redundant, but makes solving faster)
|
||||
*[
|
||||
Or(
|
||||
And(ls.discard[m][i], ls.play[m])
|
||||
for m in range(first_turn, instance.max_winning_moves)
|
||||
for i in range(instance.deck_size)
|
||||
if game_state.deck[i] == hanab_game.DeckCard(s, r)
|
||||
)
|
||||
for s in range(0, instance.num_suits)
|
||||
for r in range(1, 6)
|
||||
if r > game_state.stacks[s]
|
||||
]
|
||||
)
|
||||
|
||||
constraints = And(*[valid_move(m) for m in range(first_turn, instance.max_winning_moves)], win)
|
||||
# print('Solving instance with {} variables, {} nodes'.format(len(get_atoms(constraints)), get_formula_size(constraints)))
|
||||
|
||||
model = get_model(constraints)
|
||||
if model:
|
||||
log_model(model, game_state, ls)
|
||||
solution = evaluate_model(model, copy.deepcopy(game_state), ls)
|
||||
return True, solution
|
||||
else:
|
||||
# conj = list(conjunctive_partition(constraints))
|
||||
# print('statements: {}'.format(len(conj)))
|
||||
# ucore = get_unsat_core(conj)
|
||||
# print('unsat core size: {}'.format(len(ucore)))
|
||||
# for f in ucore:
|
||||
# print(f.serialize())
|
||||
return False, None
|
||||
|
||||
|
||||
def log_model(model, cur_game_state, ls: Literals):
|
||||
deck = cur_game_state.deck
|
||||
first_turn = len(cur_game_state.actions)
|
||||
if first_turn > 0:
|
||||
logger.debug('[print_model] Note: Omitting first {} turns, since they were fixed already.'.format(first_turn))
|
||||
for m in range(first_turn, cur_game_state.instance.max_winning_moves):
|
||||
logger.debug('=== move {} ==='.format(m))
|
||||
logger.debug('clues: {}'.format(model.get_py_value(ls.clues[m])))
|
||||
logger.debug('strikes: ' + ''.join(str(i) for i in range(1, 3) if model.get_py_value(ls.strikes[m][i])))
|
||||
logger.debug('draw: ' + ', '.join(
|
||||
'{}: {}'.format(i, deck[i]) for i in range(cur_game_state.progress, cur_game_state.instance.deck_size) if
|
||||
model.get_py_value(ls.draw[m][i])))
|
||||
logger.debug('discard: ' + ', '.join(
|
||||
'{}: {}'.format(i, deck[i]) for i in range(cur_game_state.instance.deck_size) if
|
||||
model.get_py_value(ls.discard[m][i])))
|
||||
logger.debug('pace: {}'.format(model.get_py_value(ls.pace[m])))
|
||||
for s in range(0, cur_game_state.instance.num_suits):
|
||||
logger.debug('progress {}: '.format(constants.COLOR_INITIALS[s]) + ''.join(
|
||||
str(r) for r in range(1, 6) if model.get_py_value(ls.progress[m][s, r])))
|
||||
flags = ['discard_any', 'draw_any', 'play', 'play5', 'incr_clues', 'strike', 'extraround', 'dummyturn']
|
||||
logger.debug(', '.join(f for f in flags if model.get_py_value(getattr(ls, f)[m])))
|
||||
|
||||
|
||||
# given the initial game state and the model found by the SAT solver,
|
||||
# evaluates the model to produce a full game history
|
||||
def evaluate_model(model, cur_game_state: hanab_game.GameState, ls: Literals) -> hanab_game.GameState:
|
||||
for m in range(len(cur_game_state.actions), cur_game_state.instance.max_winning_moves):
|
||||
if model.get_py_value(ls.dummyturn[m]) or cur_game_state.is_over():
|
||||
break
|
||||
if model.get_py_value(ls.discard_any[m]):
|
||||
card_idx = next(
|
||||
i for i in range(0, cur_game_state.instance.deck_size) if model.get_py_value(ls.discard[m][i]))
|
||||
if model.get_py_value(ls.play[m]) or model.get_py_value(ls.strike[m]):
|
||||
cur_game_state.play(card_idx)
|
||||
else:
|
||||
cur_game_state.discard(card_idx)
|
||||
else:
|
||||
cur_game_state.clue()
|
||||
|
||||
return cur_game_state
|
94
test.py
Normal file
94
test.py
Normal file
|
@ -0,0 +1,94 @@
|
|||
import json
|
||||
|
||||
import alive_progress
|
||||
import requests
|
||||
|
||||
from variants import Variant
|
||||
from variants import Suit, variant_name
|
||||
from site_api import *
|
||||
from download_data import download_games, detailed_export_game
|
||||
from check_game import check_game
|
||||
from compress import link
|
||||
from database.database import conn, cur
|
||||
|
||||
from database.init_database import init_database_tables, populate_static_tables
|
||||
|
||||
|
||||
def find_double_dark_games():
|
||||
cur.execute("SELECT variants.id, variants.name, count(suits.id) from variants "
|
||||
"inner join variant_suits on variants.id = variant_suits.variant_id "
|
||||
"left join suits on suits.id = variant_suits.suit_id "
|
||||
"where suits.dark = (%s) "
|
||||
"group by variants.id "
|
||||
"order by count(suits.id), variants.id",
|
||||
(True,)
|
||||
)
|
||||
cur2 = conn.cursor()
|
||||
r = []
|
||||
for (var_id, var_name, num_dark_suits) in cur.fetchall():
|
||||
if num_dark_suits == 2:
|
||||
cur2.execute("select count(*) from games where variant_id = (%s)", (var_id,))
|
||||
games = cur2.fetchone()[0]
|
||||
cur2.execute("select count(*) from seeds where variant_id = (%s)", (var_id, ))
|
||||
r.append((var_name, games, cur2.fetchone()[0]))
|
||||
l = sorted(r, key=lambda e: -e[1])
|
||||
for (name, games, seeds) in l:
|
||||
print("{}: {} games on {} seeds".format(name, games, seeds))
|
||||
|
||||
|
||||
def test_suits():
|
||||
suit = Suit.from_db(55)
|
||||
print(suit.__dict__)
|
||||
|
||||
|
||||
def test_variant():
|
||||
var = Variant.from_db(926)
|
||||
print(var.__dict__)
|
||||
|
||||
|
||||
def check_missing_ids():
|
||||
# start = 357849
|
||||
# end = 358154
|
||||
start = 358393
|
||||
end = 358687
|
||||
# broken_ids = [357913, 357914, 357915] # two of these are no variant
|
||||
# not_supported_ids = [357925, 357957, 358081]
|
||||
broken_ids = [358627, 358630, 358632]
|
||||
not_supported_ids = [
|
||||
]
|
||||
for game_id in range(start, end):
|
||||
if game_id in broken_ids or game_id in not_supported_ids:
|
||||
continue
|
||||
print(game_id)
|
||||
detailed_export_game(game_id)
|
||||
conn.commit()
|
||||
|
||||
|
||||
def export_all_seeds():
|
||||
cur.execute(
|
||||
"SELECT id FROM variants ORDER BY ID"
|
||||
)
|
||||
var_ids = cur.fetchall()
|
||||
for var in var_ids:
|
||||
download_games(*var)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
find_double_dark_games()
|
||||
exit(0)
|
||||
var_id = 964532
|
||||
export_all_seeds()
|
||||
exit(0)
|
||||
|
||||
# init_database_tables()
|
||||
# populate_static_tables()
|
||||
download_games(1)
|
||||
print(variant_name(17888))
|
||||
for page in range(0, 4):
|
||||
r = api("variants/0?size=20&col[0]=0&page={}".format(page))
|
||||
ids = []
|
||||
for game in r['rows']:
|
||||
ids.append(game['id'])
|
||||
r['rows'] = None
|
||||
print(json.dumps(r, indent=2))
|
||||
print(ids)
|
|
@ -1,44 +1,36 @@
|
|||
import enum
|
||||
from typing import List, Optional
|
||||
from hanabi import hanab_game
|
||||
from hanabi import DeckCard, ActionType
|
||||
|
||||
from hanabi import database
|
||||
from database.database import cur
|
||||
|
||||
|
||||
def variant_id(name) -> Optional[int]:
|
||||
database.cur.execute(
|
||||
cur.execute(
|
||||
"SELECT id FROM variants WHERE name = %s",
|
||||
(name,)
|
||||
)
|
||||
var_id = database.cur.fetchone()
|
||||
var_id = cur.fetchone()
|
||||
if var_id is not None:
|
||||
return var_id[0]
|
||||
|
||||
|
||||
def get_all_variant_ids() -> List[int]:
|
||||
database.cur.execute(
|
||||
"SELECT id FROM variants "
|
||||
"ORDER BY id"
|
||||
)
|
||||
return [var_id for (var_id,) in database.cur.fetchall()]
|
||||
|
||||
|
||||
def variant_name(var_id) -> Optional[int]:
|
||||
database.cur.execute(
|
||||
cur.execute(
|
||||
"SELECT name FROM variants WHERE id = %s",
|
||||
(var_id,)
|
||||
)
|
||||
name = database.cur.fetchone()
|
||||
name = cur.fetchone()
|
||||
if name is not None:
|
||||
return name[0]
|
||||
|
||||
|
||||
def num_suits(var_id) -> Optional[int]:
|
||||
database.cur.execute(
|
||||
cur.execute(
|
||||
"SELECT num_suits FROM variants WHERE id = %s",
|
||||
(var_id,)
|
||||
)
|
||||
num = database.cur.fetchone()
|
||||
num = cur.fetchone()
|
||||
if num is not None:
|
||||
return num
|
||||
|
||||
|
@ -90,19 +82,19 @@ class Suit:
|
|||
|
||||
@staticmethod
|
||||
def from_db(suit_id):
|
||||
database.cur.execute(
|
||||
cur.execute(
|
||||
"SELECT name, display_name, abbreviation, rank_clues, color_clues, prism, dark, reversed "
|
||||
"FROM suits "
|
||||
"WHERE id = %s",
|
||||
(suit_id,)
|
||||
)
|
||||
suit_properties = database.cur.fetchone()
|
||||
suit_properties = cur.fetchone()
|
||||
|
||||
database.cur.execute(
|
||||
cur.execute(
|
||||
"SELECT color_id FROM suit_colors WHERE suit_id = %s",
|
||||
(suit_id,)
|
||||
)
|
||||
colors = list(map(lambda t: t[0], database.cur.fetchall()))
|
||||
colors = list(map(lambda t: t[0], cur.fetchall()))
|
||||
return Suit(*suit_properties, colors)
|
||||
|
||||
|
||||
|
@ -169,7 +161,7 @@ class Variant:
|
|||
def _synesthesia_ranks(self, color_value: int) -> List[int]:
|
||||
return [rank for rank in self.ranks if (rank - color_value) % len(self.colors) == 0]
|
||||
|
||||
def rank_touches(self, card: hanab_game.DeckCard, value: int):
|
||||
def rank_touches(self, card: DeckCard, value: int):
|
||||
assert 0 <= card.suitIndex < self.num_suits,\
|
||||
f"Unexpected card {card}, suitIndex {card.suitIndex} out of bounds for {self.num_suits} suits."
|
||||
assert not self.no_rank_clues, "Cluing rank not allowed in this variant."
|
||||
|
@ -194,7 +186,7 @@ class Variant:
|
|||
ranks = self._preprocess_rank(value)
|
||||
return any(self.suits[card.suitIndex].rank_touches(card.rank, rank) for rank in ranks)
|
||||
|
||||
def color_touches(self, card: hanab_game.DeckCard, value: int):
|
||||
def color_touches(self, card: DeckCard, value: int):
|
||||
assert 0 <= card.suitIndex < self.num_suits, \
|
||||
f"Unexpected card {card}, suitIndex {card.suitIndex} out of bounds for {self.num_suits} suits."
|
||||
assert not self.no_color_clues, "Cluing color not allowed in this variant."
|
||||
|
@ -232,7 +224,7 @@ class Variant:
|
|||
|
||||
@staticmethod
|
||||
def from_db(var_id):
|
||||
database.cur.execute(
|
||||
cur.execute(
|
||||
"SELECT "
|
||||
"name, clue_starved, throw_it_in_a_hole, alternating_clues, synesthesia, chimneys, funnels, "
|
||||
"no_color_clues, no_rank_clues, empty_color_clues, empty_rank_clues, odds_and_evens, up_or_down,"
|
||||
|
@ -240,14 +232,14 @@ class Variant:
|
|||
"FROM variants WHERE id = %s",
|
||||
(var_id,)
|
||||
)
|
||||
var_properties = database.cur.fetchone()
|
||||
var_properties = cur.fetchone()
|
||||
|
||||
database.cur.execute(
|
||||
cur.execute(
|
||||
"SELECT suit_id FROM variant_suits "
|
||||
"WHERE variant_id = %s "
|
||||
"ORDER BY index",
|
||||
(var_id,)
|
||||
)
|
||||
var_suits = [Suit.from_db(*s) for s in database.cur.fetchall()]
|
||||
var_suits = [Suit.from_db(*s) for s in cur.fetchall()]
|
||||
|
||||
return Variant(*var_properties, var_suits)
|
Loading…
Reference in a new issue