218 lines
No EOL
6 KiB
C++
218 lines
No EOL
6 KiB
C++
#ifndef DYNAMIC_PROGRAM_GAME_STATE_H
|
|
#define DYNAMIC_PROGRAM_GAME_STATE_H
|
|
|
|
#include <array>
|
|
#include <cstdint>
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <bitset>
|
|
#include <limits>
|
|
#include <optional>
|
|
#include <boost/container/static_vector.hpp>
|
|
#include <list>
|
|
#include <ostream>
|
|
|
|
|
|
namespace Hanabi {
|
|
|
|
using rank_t = std::uint8_t;
|
|
using suit_t = std::uint8_t;
|
|
using clue_t = std::uint8_t;
|
|
using player_t = std::int8_t;
|
|
|
|
using state_t = std::uint32_t;
|
|
|
|
/**
|
|
* We will generally assume that stacks are played from n to 0
|
|
* Playing a 0 will yield a clue
|
|
* Therefore, for the default hanabi, we will play 4,3,2,1,0 in that order
|
|
* on each stack. A stack with no cards played implicitly has value 5 on it
|
|
* This is just easier to implement, since then the remaining number of cards
|
|
* to be played is always the current number of the stack
|
|
*/
|
|
constexpr rank_t starting_card_rank = 5;
|
|
constexpr suit_t max_suit_index = 5;
|
|
constexpr size_t max_card_duplicity = 3;
|
|
constexpr player_t draw_pile = -1;
|
|
constexpr player_t trash_or_play_stack = -2;
|
|
constexpr clue_t max_num_clues = 8;
|
|
|
|
constexpr std::array<std::string, 6> suit_initials{"r", "y", "g", "b", "p", "t"};
|
|
|
|
struct Card {
|
|
suit_t suit;
|
|
rank_t rank;
|
|
uint8_t copy;
|
|
|
|
Card &operator++();
|
|
Card successor() const;
|
|
const Card operator++(int);
|
|
|
|
auto operator<=>(const Card &) const = default;
|
|
};
|
|
|
|
std::ostream &operator<<(std::ostream &os, const Card &card) {
|
|
os << suit_initials[card.suit] << 5 - card.rank;
|
|
return os;
|
|
}
|
|
|
|
constexpr Card r0 = {0, 0, 0};
|
|
constexpr Card r1 = {0, 1, 0};
|
|
constexpr Card r2 = {0, 2, 0};
|
|
constexpr Card r3 = {0, 3, 0};
|
|
constexpr Card r4 = {0, 4, 0};
|
|
constexpr Card y0 = {1, 0, 0};
|
|
constexpr Card y1 = {1, 1, 0};
|
|
constexpr Card y2 = {1, 2, 0};
|
|
constexpr Card y3 = {1, 3, 0};
|
|
constexpr Card y4 = {1, 4, 0};
|
|
|
|
/**
|
|
* To store:
|
|
* - Draw pile size
|
|
* - Distribution of cards
|
|
* - Which cards exist?
|
|
* - Number of clues
|
|
*/
|
|
|
|
template <std::size_t num_suits> using Stacks = std::array<rank_t, num_suits>;
|
|
|
|
template <std::size_t num_suits>
|
|
std::ostream &operator<<(std::ostream &os, const Stacks<num_suits> &stacks);
|
|
|
|
struct CardMultiplicity {
|
|
Card card;
|
|
std::uint8_t multiplicity;
|
|
|
|
auto operator<=>(const CardMultiplicity &) const = default;
|
|
};
|
|
|
|
template <std::size_t num_suits, typename T, bool respect_card_duplicity>
|
|
struct CardArrayMember {
|
|
};
|
|
|
|
template <std::size_t num_suits, typename T>
|
|
struct CardArrayMember<num_suits, T, true> {
|
|
auto operator<=>(const CardArrayMember &) const = default;
|
|
std::array<std::array<std::array<T , max_card_duplicity>, starting_card_rank>, num_suits> array {};
|
|
};
|
|
|
|
template <std::size_t num_suits, typename T>
|
|
struct CardArrayMember<num_suits, T, false> {
|
|
auto operator<=>(const CardArrayMember &) const = default;
|
|
std::array<std::array<T, starting_card_rank>, num_suits> array {};
|
|
};
|
|
|
|
template <std::size_t num_suits, typename T, bool respect_card_duplicity = true> struct CardArray {
|
|
|
|
using value_type = T;
|
|
|
|
CardArray() = default;
|
|
explicit CardArray(value_type default_val);
|
|
|
|
const value_type &operator[](const Card &card) const;
|
|
|
|
value_type &operator[](const Card &card);
|
|
|
|
auto operator<=>(const CardArray &) const = default;
|
|
|
|
private:
|
|
CardArrayMember<num_suits, T, respect_card_duplicity> _vals;
|
|
};
|
|
|
|
enum class ActionType {
|
|
play = 0,
|
|
discard = 1,
|
|
clue = 2,
|
|
color_clue = 2,
|
|
rank_clue = 3,
|
|
end_game = 4,
|
|
vote_terminate = 10,
|
|
};
|
|
|
|
struct BacktrackAction {
|
|
ActionType type{};
|
|
// The card that was discarded or played
|
|
Card discarded{};
|
|
// Index of card in hand that was discarded or played
|
|
std::uint8_t index{};
|
|
// Multiplicity of new draw (needed for probability calculations)
|
|
std::uint8_t multiplicity{};
|
|
};
|
|
|
|
template <std::size_t num_suits, player_t num_players, std::size_t hand_size>
|
|
class HanabiState {
|
|
public:
|
|
HanabiState() = default;
|
|
explicit HanabiState(const std::vector<Card>& deck);
|
|
|
|
double backtrack(size_t depth);
|
|
|
|
BacktrackAction clue();
|
|
|
|
/**
|
|
* Plays a card from current hand, drawing top card of draw pile and rotating draw pile
|
|
* @param index of card in hand to be played
|
|
*/
|
|
BacktrackAction play(std::uint8_t index);
|
|
|
|
BacktrackAction discard(std::uint8_t index);
|
|
|
|
std::uint8_t find_card_in_hand(const Card& card) const;
|
|
|
|
void normalize_draw_and_positions();
|
|
|
|
void revert(const BacktrackAction &action);
|
|
|
|
uint8_t draw(uint8_t index);
|
|
|
|
void revert_draw(std::uint8_t index, Card discarded_card);
|
|
|
|
void incr_turn();
|
|
|
|
void decr_turn();
|
|
|
|
bool is_trash(const Card& card) const;
|
|
bool is_playable(const Card& card) const;
|
|
|
|
player_t _turn{};
|
|
clue_t _num_clues{};
|
|
std::uint8_t _weighted_draw_pile_size{};
|
|
Stacks<num_suits> _stacks{};
|
|
std::array<std::array<Card, hand_size>, num_players> _hands{};
|
|
// CardArray<num_suits, player_t> _card_positions{};
|
|
std::list<CardMultiplicity> _draw_pile{};
|
|
std::uint8_t _endgame_turns_left;
|
|
|
|
static constexpr uint8_t no_endgame = std::numeric_limits<uint8_t>::max() - 1;
|
|
|
|
// further statistics that we might want to keep track of
|
|
uint8_t _pace{};
|
|
uint8_t _score{};
|
|
|
|
std::uint64_t _enumerated_states {};
|
|
|
|
auto operator<=>(const HanabiState &) const = default;
|
|
};
|
|
|
|
template <std::size_t num_suits, player_t num_players, std::size_t hand_size>
|
|
bool same_up_to_discard_permutation(HanabiState<num_suits, num_players, hand_size> state1, HanabiState<num_suits, num_players, hand_size> state2) {
|
|
auto comp = [](CardMultiplicity &m1, CardMultiplicity &m2) -> bool {
|
|
return m1.card.suit < m2.card.suit || (m1.card.suit == m2.card.suit and m1.card.rank < m2.card.rank) ||
|
|
(m1.card.suit == m2.card.suit and m1.card.rank == m2.card.rank and m1.multiplicity < m2.multiplicity);
|
|
};
|
|
state1._draw_pile.sort(comp);
|
|
state2._draw_pile.sort(comp);
|
|
return state1 == state2;
|
|
}
|
|
|
|
template <std::size_t num_suits, player_t num_players, std::size_t hand_size>
|
|
std::ostream & operator<<(std::ostream &os, HanabiState<num_suits, num_players, hand_size> hanabi_state);
|
|
|
|
template class HanabiState<5, 3, 4>;
|
|
|
|
}
|
|
|
|
#include "game_state.hpp"
|
|
|
|
#endif // DYNAMIC_PROGRAM_GAME_STATE_H
|