Endgame-Analyzer/game_state.hpp

418 lines
No EOL
16 KiB
C++

#include <algorithm>
#include <iterator>
#include "myassert.h"
namespace Hanabi {
Card &Card::operator++() {
rank++;
return *this;
}
Card Card::successor() const { return {suit, static_cast<rank_t>(rank + 1)}; }
const Card Card::operator++(int) {
Card ret = *this;
rank++;
return ret;
}
template<std::size_t num_suits>
std::ostream &operator<<(std::ostream &os, const Stacks<num_suits> &stacks) {
for (size_t i = 0; i < stacks.size() - 1; i++) {
os << starting_card_rank - stacks[i] << ", ";
}
os << starting_card_rank - stacks.back();
return os;
}
template<std::size_t num_suits, typename T, bool respect_card_duplicity>
CardArray<num_suits, T, respect_card_duplicity>::CardArray(T default_val) {
for(size_t suit = 0; suit < num_suits; suit++) {
for (rank_t rank = 0; rank < starting_card_rank; rank++) {
if constexpr (respect_card_duplicity) {
std::ranges::fill(_vals.array[suit][rank], default_val);
} else {
_vals.array[suit][rank] = default_val;
}
}
}
}
template<std::size_t num_suits, typename T, bool respect_card_duplicity>
const T& CardArray<num_suits, T, respect_card_duplicity>::operator[](const Card &card) const {
if constexpr (respect_card_duplicity) {
return _vals.array[card.suit][card.rank][card.copy];
} else {
return _vals.array[card.suit][card.rank];
}
};
template<std::size_t num_suits, typename T, bool respect_card_duplicity>
T& CardArray<num_suits, T, respect_card_duplicity>::operator[](const Card &card) {
if constexpr (respect_card_duplicity) {
return _vals.array[card.suit][card.rank][card.copy];
} else {
return _vals.array[card.suit][card.rank];
}
};
template<size_t num_suits, player_t num_players, size_t hand_size>
HanabiState<num_suits, num_players, hand_size>::HanabiState(const std::vector<Card> &deck):
_turn(0),
_num_clues(max_num_clues),
_weighted_draw_pile_size(deck.size()),
_stacks(),
_hands(),
// _card_positions(draw_pile),
_draw_pile(),
_endgame_turns_left(no_endgame),
_pace(deck.size() - 5 * num_suits - num_players * (hand_size - 1)),
_score(0) {
std::ranges::fill(_stacks, starting_card_rank);
for(const Card& card: deck) {
_draw_pile.push_back({card, 1});
}
for(player_t player = 0; player < num_players; player++) {
for(std::uint8_t index = 0; index < hand_size; index++) {
draw(index);
}
incr_turn();
}
ASSERT(_turn == 0);
}
template<size_t num_suits, player_t num_players, size_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::clue() {
ASSERT(_num_clues > 0);
--_num_clues;
incr_turn();
}
template<size_t num_suits, player_t num_players, size_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::incr_turn() {
_turn = (_turn + 1) % num_players;
if(_endgame_turns_left != no_endgame) {
_endgame_turns_left--;
}
}
template<size_t num_suits, player_t num_players, size_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::decr_turn() {
_turn = (_turn + num_players - 1) % num_players;
if (_endgame_turns_left != no_endgame) {
_endgame_turns_left++;
}
}
template<size_t num_suits, player_t num_players, size_t hand_size>
bool HanabiState<num_suits, num_players, hand_size>::is_playable(const Hanabi::Card &card) const {
return card.rank == _stacks[card.suit] - 1;
}
template<size_t num_suits, player_t num_players, size_t hand_size>
bool HanabiState<num_suits, num_players, hand_size>::is_trash(const Hanabi::Card &card) const {
return card.rank >= _stacks[card.suit];
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
BacktrackAction HanabiState<num_suits, num_players, hand_size>::play(
std::uint8_t index) {
ASSERT(index < _hands[_turn].size());
const Card card = _hands[_turn][index];
ASSERT(card.rank == _stacks[card.suit] - 1);
--_stacks[card.suit];
_score++;
BacktrackAction ret{_hands[_turn][index], index, 0};
if (card.rank == 0) {
// update clues if we played the last card of a stack
_num_clues++;
}
ret.multiplicity = draw(index);
incr_turn();
return ret;
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
BacktrackAction HanabiState<num_suits, num_players, hand_size>::discard(std::uint8_t index) {
ASSERT(index < _hands[_turn].size());
ASSERT(_num_clues != max_num_clues);
_num_clues++;
_pace--;
BacktrackAction ret{_hands[_turn][index], index};
ret.multiplicity = draw(index);
incr_turn();
return ret;
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
std::uint8_t HanabiState<num_suits, num_players, hand_size>::find_card_in_hand(
const Hanabi::Card &card) const {
for(std::uint8_t i = 0; i < hand_size; i++) {
if(_hands[_turn][i].rank == card.rank && _hands[_turn][i].suit == card.suit) {
return i;
}
}
return -1;
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
std::ostream &operator<<(std::ostream &os, const HanabiState<num_suits, num_players, hand_size> hanabi_state) {
os << "Stacks: " << hanabi_state._stacks << " (score " << +hanabi_state._score << ")";
os << ", clues: " << +hanabi_state._num_clues << ", turn: " << +hanabi_state._turn << std::endl;
os << "Draw pile: ";
for (const auto &[card, mul]: hanabi_state._draw_pile) {
os << card;
if (mul > 1) {
os << " (" << +mul << ")";
}
os << ", ";
}
os << "(size " << +hanabi_state._weighted_draw_pile_size << ")" << std::endl;
os << "Hands: ";
for (const auto &hand: hanabi_state._hands) {
for (const auto &card: hand) {
os << card << ", ";
}
os << " | ";
}
return os;
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
std::uint8_t HanabiState<num_suits, num_players, hand_size>::draw(uint8_t index) {
ASSERT(index < _hands[_turn].size());
const Card& discarded = _hands[_turn][index];
if (_stacks[discarded.suit] > discarded.rank) {
// _card_positions[_hands[_turn][index]] = trash_or_play_stack;
}
// draw a new card if the draw pile is not empty
if (!_draw_pile.empty()) {
--_weighted_draw_pile_size;
const CardMultiplicity draw = _draw_pile.front();
_draw_pile.pop_front();
ASSERT(draw.multiplicity > 0);
if (draw.multiplicity > 1) {
_draw_pile.push_back(draw);
_draw_pile.back().multiplicity--;
}
Card& card_in_hand = _hands[_turn][index];
card_in_hand = draw.card;
card_in_hand.copy = draw.multiplicity - 1;
if (_stacks[draw.card.suit] > draw.card.rank) {
// _card_positions[card_in_hand] = _turn;
}
if(_draw_pile.empty()) {
// Note the +1, since we will immediately decrement this when moving to the next player
_endgame_turns_left = num_players + 1;
}
return draw.multiplicity;
}
return 0;
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::revert_draw(std::uint8_t index, Card discarded_card) {
if (_endgame_turns_left == num_players + 1 || _endgame_turns_left == no_endgame) {
// Put the card that is currently in hand back into the draw pile
ASSERT(index < _hands[_turn].size());
const Card &drawn = _hands[_turn][index];
if (_stacks[drawn.suit] > drawn.rank) {
// _card_positions[drawn] = draw_pile;
}
// put discarded_card back into draw pile (at the back)
if (!_draw_pile.empty() and _draw_pile.back().card.suit == drawn.suit and
_draw_pile.back().card.rank == drawn.rank) {
_draw_pile.back().multiplicity++;
} else {
_draw_pile.push_back({drawn, 1});
}
_weighted_draw_pile_size++;
_endgame_turns_left = no_endgame;
}
_hands[_turn][index] = discarded_card;
if (_stacks[discarded_card.suit] > discarded_card.rank) {
// _card_positions[discarded_card] = _turn;
}
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::normalize_draw_and_positions() {
const Card trash = [this]() -> Card {
for(suit_t suit = 0; suit < num_suits; suit++) {
if(_stacks[suit] < starting_card_rank) {
return {suit, starting_card_rank - 1, 0};
}
}
return {0,0,0};
}();
CardArray<num_suits, std::uint8_t, false> nums_in_draw_pile;
std::uint8_t num_trash_in_draw_pile = 0;
for(const auto [card, multiplicity] : _draw_pile) {
if (_stacks[card.suit] > card.rank) {
nums_in_draw_pile[card] += multiplicity;
} else {
num_trash_in_draw_pile++;
}
}
_draw_pile.clear();
for(suit_t suit = 0; suit < num_suits; suit++) {
for(rank_t rank = 0; rank < starting_card_rank; rank++) {
Card card {suit, rank, 0};
if (nums_in_draw_pile[card] > 0) {
_draw_pile.push_back({card, nums_in_draw_pile[card]});
for (std::uint8_t copy = 0; copy < nums_in_draw_pile[card]; copy++) {
card.copy = copy;
// _card_positions[card] = draw_pile;
}
}
}
}
_draw_pile.push_back({trash, num_trash_in_draw_pile});
for(player_t player = 0; player < num_players; player++) {
for(Card& card : _hands[player]) {
if (_stacks[card.suit] > card.rank) {
card.copy = nums_in_draw_pile[card];
nums_in_draw_pile[card]++;
}
}
}
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::revert_play(const BacktrackAction& action) {
decr_turn();
if (action.discarded.rank == 0) {
_num_clues--;
}
revert_draw(action.index, action.discarded);
_stacks[action.discarded.suit]++;
_score--;
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::revert_discard(const BacktrackAction& action) {
decr_turn();
ASSERT(_num_clues > 0);
_num_clues--;
_pace++;
revert_draw(action.index, action.discarded);
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
void HanabiState<num_suits, num_players, hand_size>::revert_clue() {
decr_turn();
ASSERT(_num_clues < max_num_clues);
_num_clues++;
}
#define UPDATE_PROBABILITY(new_probability) \
best_probability = std::max(best_probability, new_probability); \
if (best_probability == 1) { \
return best_probability; \
}
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
double HanabiState<num_suits, num_players, hand_size>::backtrack(size_t depth) {
_enumerated_states++;
if (_score == 5 * num_suits) {
return 1;
}
if(_pace < 0 || _endgame_turns_left == 0) {
return 0;
}
// TODO: Have some endgame analysis here?
// First, check if we have any playable cards
double best_probability = 0;
const std::array<Card, hand_size> hand = _hands[_turn];
// First, check for playables
for(std::uint8_t index = 0; index < hand_size; index++) {
if(is_playable(hand[index])) {
if (_draw_pile.empty()) {
auto copy = *this;
BacktrackAction action = play(index);
const double probability_for_this_play = backtrack(depth + 1);
revert_play(action);
UPDATE_PROBABILITY(probability_for_this_play);
} else {
double sum_of_probabilities = 0;
uint8_t sum_of_mults = 0;
for (size_t i = 0; i < _draw_pile.size(); i++) {
BacktrackAction action = play(index);
sum_of_probabilities += backtrack(depth + 1) * action.multiplicity;
sum_of_mults += action.multiplicity;
revert_play(action);
ASSERT(sum_of_mults <= _weighted_draw_pile_size);
}
ASSERT(sum_of_mults == _weighted_draw_pile_size);
const double probability_for_this_play = sum_of_probabilities / _weighted_draw_pile_size;
UPDATE_PROBABILITY(probability_for_this_play);
}
}
}
// Check for discards now
if(_pace > 0) {
for(std::uint8_t index = 0; index < hand_size; index++) {
if (is_trash(hand[index])) {
double sum_of_probabilities = 0;
if (_draw_pile.empty()) {
BacktrackAction action = discard(index);
const double probability_for_this_discard = backtrack(depth + 1);
revert_discard(action);
UPDATE_PROBABILITY(probability_for_this_discard);
} else {
uint8_t sum_of_mults = 0;
for (size_t i = 0; i < _draw_pile.size(); i++) {
BacktrackAction action = discard(index);
sum_of_probabilities += backtrack(depth + 1) * action.multiplicity;
sum_of_mults += action.multiplicity;
revert_discard(action);
}
ASSERT(sum_of_mults == _weighted_draw_pile_size);
const double probability_discard = sum_of_probabilities / _weighted_draw_pile_size;
UPDATE_PROBABILITY(probability_discard);
}
// All discards are equivalent, do not continue searching for different trash
break;
}
}
}
// Last option is to stall
if(_num_clues > 0) {
clue();
const double probability_stall = backtrack(depth + 1);
revert_clue();
UPDATE_PROBABILITY(probability_stall);
}
return best_probability;
}
} // namespace Hanabi