Endgame-Analyzer/include/game_state.h
2024-01-12 18:05:15 +01:00

280 lines
8.8 KiB
C++

#ifndef DYNAMIC_PROGRAM_GAME_STATE_H
#define DYNAMIC_PROGRAM_GAME_STATE_H
#include <array>
#include <bitset>
#include <cstdint>
#include <limits>
#include <list>
#include <optional>
#include <ostream>
#include <stack>
#include <unordered_map>
#include <vector>
#include <memory>
#include <boost/container/static_vector.hpp>
#include <boost/rational.hpp>
#include "game_interface.h"
namespace Hanabi
{
template<size_t num_suits>
using Stacks = std::array<rank_t, num_suits>;
template<size_t num_suits>
std::ostream & operator<<(std::ostream & os, const Stacks<num_suits> & stacks);
template<typename T>
struct InnerCardArray
{
template<size_t N>
using array_t = std::array<T, N>;
};
template<>
struct InnerCardArray<bool>
{
template<size_t N>
using array_t = std::bitset<N>;
};
template<suit_t num_suits, typename T>
struct CardArray
{
using value_type = T;
CardArray() = default;
explicit CardArray(value_type default_val);
void fill(value_type val);
const value_type & operator[](const Card & card) const;
value_type & operator[](const Card & card);
auto operator<=>(const CardArray &) const = default;
private:
using inner_array_t = typename InnerCardArray<T>::template array_t<starting_card_rank>;
std::array<inner_array_t, num_suits> _array{};
};
// A game mimics a game state together with a list of actions and allows to traverse the game
// history by making and reverting the stored actions.
template<suit_t num_suits, player_t num_players, hand_index_t hand_size>
class HanabiState : public HanabiStateIF
{
public:
HanabiState() = default;
explicit HanabiState(const std::vector<Card> & deck, uint8_t score_goal = 5 * num_suits, clue_t num_clues_gained_on_discard_or_stack_finished = 1);
void give_clue() final;
void discard(hand_index_t index) final;
void play(hand_index_t index) final;
void rotate_next_draw(const Card & card) final;
ActionType last_action_type() const final;
void revert() final;
void modify_clues(clue_t change) final;
void set_clues(clue_t clues) final;
[[nodiscard]] player_t turn() const final;
[[nodiscard]] clue_t num_clues() const final;
[[nodiscard]] unsigned score() const final;
[[nodiscard]] std::vector<std::vector<Card>> hands() const final;
[[nodiscard]] std::vector<Card> cur_hand() const final;
[[nodiscard]] size_t draw_pile_size() const final;
[[nodiscard]] hand_index_t find_card_in_hand(const Card & card) const final;
[[nodiscard]] bool is_trash(const Card & card) const final;
/** Returns whether the card is critical, assuming that it is non-trash */
[[nodiscard]] bool is_critical(const Card & card) const final;
[[nodiscard]] bool is_playable(const Card & card) const final;
[[nodiscard]] bool is_relative_state_initialized() const final;
[[nodiscard]] std::uint64_t enumerated_states() const final;
[[nodiscard]] const std::unordered_map<unsigned long, probability_t> & position_tablebase() const final;
void init_backtracking_information() final;
probability_t evaluate_state() final;
[[nodiscard]] std::optional<probability_t> lookup() const final;
[[nodiscard]] std::uint64_t unique_id() const final;
[[nodiscard]] std::pair<std::vector<std::uint64_t>, std::vector<Card>> dump_unique_id_parts() const final;
std::vector<std::pair<Action, std::optional<probability_t>>> get_reasonable_actions() final;
std::vector<std::pair<CardMultiplicity, std::optional<probability_t>>>
possible_next_states(hand_index_t index, bool play) final;
auto operator<=>(const HanabiState &) const = default;
protected:
void print(std::ostream & os) const final;
private:
struct BacktrackAction
{
explicit BacktrackAction(
ActionType action_type
, Card discarded_or_played = Cards::unknown
, hand_index_t index = 0
, bool was_on_8_clues = false
, bool strike = false
);
ActionType action_type{};
// The card that was discarded or played
Card discarded{};
// Index of card in hand that was discarded or played
hand_index_t index{};
// Indicates whether before the action was taken, we had 8 clues.
// This is important so that we know if we go back to 7 or 8 clues when we revert playing a 5
bool was_on_8_clues{false};
// Indicates whether playing this card triggered a bomb.
// This cannot be deduced just from the stacks since we cannot differentiate between a card
// having been played correctly or the top card of the draw pile being bombed.
bool strike{false};
};
// This keeps track of the representation of the gamestate relative to some starting state
// and is used for id calculation
struct RelativeRepresentationData
{
static constexpr player_t draw_pile = num_players;
static constexpr player_t discard_pile = num_players + 1;
static constexpr player_t play_stack = num_players + 2;
enum CardPosition : uint8_t
{
hand = 0, played = 1, discarded = 2
};
// List of unique non-trash cards in draw pile
boost::container::static_vector<Card, 30> good_cards_draw;
// Card positions of these cards. Indexes correspond to the cards stored in _good_cards_draw vector
boost::container::static_vector<boost::container::static_vector<player_t, max_card_duplicity>
, 30> card_positions_draw;
// This will indicate whether cards that were in hands initially still are in hand
// The first n bits are used and cards are assumed to have been marked with their indices in this bitset
boost::container::static_vector<CardPosition, num_players * hand_size> card_positions_hands{};
// Note this is not the same as _good_cards_draw.size(), since this accounts for multiplicities
std::uint8_t initial_draw_pile_size{0};
// Whether we initialized the values above and marked cards accordingly
bool initialized{false};
};
unsigned long discard_and_potentially_update(hand_index_t index, bool cycle = false);
unsigned long play_and_potentially_update(hand_index_t index, bool cycle = false);
unsigned draw(hand_index_t index, bool cycle = false, bool played = true);
void revert_draw(hand_index_t index, Card discarded_card, bool cycle = false, bool played = true);
void revert_clue();
void revert_discard(bool cycle = false);
void revert_play(bool cycle = false);
void update_tablebase(unsigned long id, probability_t probability);
template<class Function>
void do_for_each_potential_draw(hand_index_t index, bool play, Function f);
void incr_turn();
void decr_turn();
void check_draw_pile_integrity() const;
probability_t check_play_or_discard(hand_index_t index, bool play);
static constexpr uint8_t no_endgame = std::numeric_limits<uint8_t>::max();
// Usual game state
clue_t const _clues_gained_on_discard_or_stack_finished { 1 };
uint8_t const _score_goal{};
player_t _turn{};
clue_t _num_clues{};
std::uint8_t _weighted_draw_pile_size{};
Stacks<num_suits> _stacks{};
std::array<std::array<Card, hand_size>, num_players> _hands{};
std::list<CardMultiplicity> _draw_pile{};
std::uint8_t _endgame_turns_left{};
// This will actually not always be updated exactly, but only for those cards that are not
// trash yet, since for trash, this is simply not interesting.
// Thus, we only need to update this on discards or misplays.
CardArray<num_suits, int8_t> _num_copies_left {0};
// further values of game state that are technically determined, but we update them anyway
int8_t _pace{};
uint8_t _score{};
// For reverting the current game
std::stack<BacktrackAction> _actions_log;
// For calculating ids of states during backtracking
RelativeRepresentationData _relative_representation;
// Lookup table for states. Uses the ids calculated using the relative representation
std::unordered_map<unsigned long, probability_t> _position_tablebase;
std::uint64_t _enumerated_states{};
};
template<std::size_t num_suits, player_t num_players, std::size_t hand_size>
bool same_up_to_discard_permutation(
HanabiState<num_suits, num_players, hand_size> state1, HanabiState<num_suits
, num_players
, hand_size> state2
)
{
auto comp = [](CardMultiplicity & m1, CardMultiplicity & m2) -> bool {
return m1.card.suit < m2.card.suit || (m1.card.suit == m2.card.suit and m1.card.rank < m2.card.rank) ||
(m1.card.suit == m2.card.suit and m1.card.rank == m2.card.rank and m1.multiplicity < m2.multiplicity);
};
state1._draw_pile.sort(comp);
state2._draw_pile.sort(comp);
return state1 == state2;
}
}
#include "game_state.hpp"
#endif // DYNAMIC_PROGRAM_GAME_STATE_H