#include #include #include namespace Hanabi { Card &Card::operator++() { rank++; return *this; } Card Card::successor() const { return {suit, static_cast(rank + 1)}; } const Card Card::operator++(int) { Card ret = *this; rank++; return ret; } template std::ostream &operator<<(std::ostream &os, const Stacks &stacks) { for (size_t i = 0; i < stacks.size() - 1; i++) { os << starting_card_rank - stacks[i] << ", "; } os << starting_card_rank - stacks.back(); return os; } template CardArray::CardArray(T default_val) { for(size_t suit = 0; suit < num_suits; suit++) { for (rank_t rank = 0; rank < starting_card_rank; rank++) { if constexpr (respect_card_duplicity) { std::ranges::fill(_vals.array[suit][rank], default_val); } else { _vals.array[suit][rank] = default_val; } } } } template const T& CardArray::operator[](const Card &card) const { if constexpr (respect_card_duplicity) { return _vals.array[card.suit][card.rank][card.copy]; } else { return _vals.array[card.suit][card.rank]; } }; template T& CardArray::operator[](const Card &card) { if constexpr (respect_card_duplicity) { return _vals.array[card.suit][card.rank][card.copy]; } else { return _vals.array[card.suit][card.rank]; } }; template HanabiState::HanabiState(const std::vector &deck): _turn(0), _num_clues(max_num_clues), _weighted_draw_pile_size(deck.size() - num_players * hand_size), _stacks(), _hands(), _card_positions(draw_pile), _draw_pile(), _pace(deck.size() - 5 * num_suits - num_players * (hand_size - 1)), _score(0) { std::ranges::fill(_stacks, starting_card_rank); for(const Card& card: deck) { _draw_pile.push_back({card, 1}); } for(player_t player = 0; player < num_players; player++) { for(std::uint8_t index = 0; index < hand_size; index++) { draw(index); } incr_turn(); } assert(_turn == 0); } template BacktrackAction HanabiState::clue() { assert(_num_clues > 0); --_num_clues; incr_turn(); return BacktrackAction{ActionType::clue, {}, {}}; } template void HanabiState::incr_turn() { _turn = (_turn + 1) % num_players; if(endgame_turns_left != -1) { endgame_turns_left--; } } template void HanabiState::decr_turn() { _turn = (_turn + num_players - 1) % num_players; if (endgame_turns_left != -1) { endgame_turns_left++; } } template bool HanabiState::is_playable(const Hanabi::Card &card) const { return card.rank == _stacks[card.suit] - 1; } template bool HanabiState::is_trash(const Hanabi::Card &card) const { return card.rank >= _stacks[card.suit]; } template BacktrackAction HanabiState::play( std::uint8_t index) { assert(index < _hands[_turn].size()); const Card card = _hands[_turn][index]; assert(card.rank == _stacks[card.suit] - 1); --_stacks[card.suit]; _score++; BacktrackAction ret{ActionType::play, _hands[_turn][index], index, 0}; if (card.rank == 0) { // update clues if we played the last card of a stack _num_clues++; } ret.multiplicity = draw(index); incr_turn(); return ret; } template BacktrackAction HanabiState::discard(std::uint8_t index) { assert(index < _hands[_turn].size()); assert(_num_clues != max_num_clues); _num_clues++; _pace--; BacktrackAction ret{ActionType::discard, _hands[_turn][index], index}; ret.multiplicity = draw(index); incr_turn(); return ret; } template std::uint8_t HanabiState::find_card_in_hand( const Hanabi::Card &card) const { for(std::uint8_t i = 0; i < hand_size; i++) { if(_hands[_turn][i].rank == card.rank && _hands[_turn][i].suit == card.suit) { return i; } } return -1; } template std::ostream &operator<<(std::ostream &os, const HanabiState hanabi_state) { os << "Stacks: " << hanabi_state._stacks << std::endl; os << "Draw pile: "; for (const auto &[card, mul]: hanabi_state._draw_pile) { os << card; if (mul > 1) { os << " (" << +mul << ")"; } os << ", "; } os << std::endl; os << "Hands: "; for (const auto &hand: hanabi_state._hands) { for (const auto &card: hand) { os << card << ", "; } os << " | "; } return os; } template std::uint8_t HanabiState::draw(uint8_t index) { assert(index < _hands[_turn].size()); const Card& discarded = _hands[_turn][index]; if (_stacks[discarded.suit] > discarded.rank) { _card_positions[_hands[_turn][index]] = trash_or_play_stack; } // draw a new card if the draw pile is not empty if (!_draw_pile.empty()) { --_weighted_draw_pile_size; const CardMultiplicity draw = _draw_pile.front(); _draw_pile.pop_front(); assert(draw.multiplicity > 0); if (draw.multiplicity > 1) { _draw_pile.push_back(draw); _draw_pile.back().multiplicity--; } Card& card_in_hand = _hands[_turn][index]; card_in_hand = draw.card; card_in_hand.copy = draw.multiplicity - 1; if (_stacks[draw.card.suit] > draw.card.rank) { _card_positions[card_in_hand] = _turn; } if(_draw_pile.empty()) { endgame_turns_left = num_players; } return draw.multiplicity; } return 0; } template void HanabiState::revert_draw(std::uint8_t index, Card card) { endgame_turns_left = -1; assert(index < _hands[_turn].size()); const Card& discarded = _hands[_turn][index]; if (_stacks[discarded.suit] > discarded.rank) { _card_positions[discarded] = draw_pile; } // put card back into draw pile (at the back) if (!_draw_pile.empty() and _draw_pile.back().card == _hands[_turn][index]) { _draw_pile.back().multiplicity++; } else { _draw_pile.push_back({_hands[_turn][index], 1}); } _hands[_turn][index] = card; if (_stacks[card.suit] > card.rank) { _card_positions[card] = _turn; } _weighted_draw_pile_size++; } template void HanabiState::normalize_draw_and_positions() { const Card trash = [this]() -> Card { for(suit_t suit = 0; suit < num_suits; suit++) { if(_stacks[suit] < starting_card_rank) { return {suit, starting_card_rank - 1, 0}; } } return {0,0,0}; }(); CardArray nums_in_draw_pile; std::uint8_t num_trash_in_draw_pile = 0; for(const auto [card, multiplicity] : _draw_pile) { if (_stacks[card.suit] > card.rank) { nums_in_draw_pile[card] += multiplicity; } else { num_trash_in_draw_pile++; } } _draw_pile.clear(); for(suit_t suit = 0; suit < num_suits; suit++) { for(rank_t rank = 0; rank < starting_card_rank; rank++) { Card card {suit, rank, 0}; if (nums_in_draw_pile[card] > 0) { _draw_pile.push_back({card, nums_in_draw_pile[card]}); for (std::uint8_t copy = 0; copy < nums_in_draw_pile[card]; copy++) { card.copy = copy; _card_positions[card] = draw_pile; } } } } _draw_pile.push_back({trash, num_trash_in_draw_pile}); for(player_t player = 0; player < num_players; player++) { for(Card& card : _hands[player]) { if (_stacks[card.suit] > card.rank) { card.copy = nums_in_draw_pile[card]; nums_in_draw_pile[card]++; } } } } template void HanabiState::revert( const BacktrackAction &action) { decr_turn(); switch (action.type) { case ActionType::clue: assert(_num_clues < max_num_clues); _num_clues++; break; case ActionType::discard: assert(_num_clues > 0); _num_clues--; _pace++; revert_draw(action.index, action.discarded); break; case ActionType::play: if (action.discarded.rank == 0) { _num_clues--; } revert_draw(action.index, action.discarded); _stacks[action.discarded.suit]++; _score--; default: break; } } #define UPDATE_PROBABILITY(new_probability) \ best_probability = std::max(best_probability, new_probability); \ if (best_probability == 1) { \ return best_probability; \ } template double HanabiState::backtrack() { std::cout << *this << std::endl; if (_score == 5 * num_suits) { return 1; } if(_pace < 0 || endgame_turns_left == 0) { return 0; } // TODO: Have some endgame analysis here? // First, check if we have any playable cards double best_probability = 0; const std::array hand = _hands[_turn]; // First, check for playables for(std::uint8_t index = 0; index < hand_size; index++) { if(is_playable(hand[index])) { double sum_of_probabilities = 0; for(size_t i = 0; i < _draw_pile.size(); i++) { BacktrackAction action = play(index); sum_of_probabilities += backtrack() * action.multiplicity; revert(action); } const double probability_for_this_play = sum_of_probabilities / _weighted_draw_pile_size; UPDATE_PROBABILITY(probability_for_this_play); } } // Check for discards now if(_pace > 0) { for(std::uint8_t index = 0; index < hand_size; index++) { if (is_trash(hand[index])) { double sum_of_probabilities = 0; for(size_t i = 0; i < _draw_pile.size(); i++) { BacktrackAction action = discard(index); sum_of_probabilities += backtrack() * action.multiplicity; revert(action); } const double probability_discard = sum_of_probabilities / _weighted_draw_pile_size; UPDATE_PROBABILITY(probability_discard); // All discards are equivalent, do not continue searching for different trash break; } } } // Last option is to stall if(_num_clues > 0) { BacktrackAction action = clue(); const double probability_stall = backtrack(); revert(action); UPDATE_PROBABILITY(probability_stall); } return best_probability; } } // namespace Hanabi