rework downloading interface: return game consisting of state and actions

This commit is contained in:
Maximilian Keßler 2023-11-10 20:35:05 +01:00
parent 89bab62032
commit 9af6ef3368
Signed by: max
GPG key ID: BCC5A619923C0BA5
5 changed files with 86 additions and 90 deletions

View file

@ -15,7 +15,8 @@ find_package(Boost 1.81 COMPONENTS program_options REQUIRED)
include_directories(.) include_directories(.)
include_directories(${Boost_INCLUDE_DIR}) include_directories(${Boost_INCLUDE_DIR})
add_executable(endgame-analyzer src/main.cpp src/cli_interface.cpp src/download.cpp) add_executable(endgame-analyzer src/main.cpp src/cli_interface.cpp src/download.cpp
src/game_state.cpp)
target_link_libraries(endgame-analyzer cpr) target_link_libraries(endgame-analyzer cpr)
target_link_libraries(endgame-analyzer Boost::program_options) target_link_libraries(endgame-analyzer Boost::program_options)

View file

@ -36,16 +36,14 @@ namespace Download {
/** /**
* @brief Create game object from given source * @brief Create game object from given source
* @param game_spec Either an id to download from hanab.live or a filename with a json specification * @param game_spec Either an id to download from hanab.live or a filename with a json specification
* @param turn Turn to skip to * @param score_goal What score counts as a win for this game. If left empty, the maximum score is inserted.
* @param draw_pile_break Minimum draw pile size of produced game
* @return Game state * @return Game state
* *
* If both turn and draw_pile_break are specified, the game skips until the specified turn or the first time the * If both turn and draw_pile_break are specified, the game skips until the specified turn or the first time the
* draw pile hits the given size, whichever comes first * draw pile hits the given size, whichever comes first
* *
* @note Turns start counting at 1, since this is also the way hanab.live does it.
*/ */
std::unique_ptr<Hanabi::HanabiStateIF> get_game(std::variant<int, const char*> game_spec, unsigned turn = 1, size_t draw_pile_break = 0, std::optional<uint8_t> score_goal = std::nullopt); Hanabi::Game get_game(std::variant<int, const char*> game_spec, std::optional<uint8_t> score_goal);
} // namespace Download } // namespace Download

View file

@ -11,6 +11,7 @@
#include <stack> #include <stack>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
#include <memory>
#include <boost/container/static_vector.hpp> #include <boost/container/static_vector.hpp>
#include <boost/rational.hpp> #include <boost/rational.hpp>
@ -251,6 +252,19 @@ protected:
friend std::ostream& operator<<(std::ostream&, HanabiStateIF const&); friend std::ostream& operator<<(std::ostream&, HanabiStateIF const&);
}; };
// A game mimics a game state together with a list of actions and allows to traverse the game
// history by making and reverting the stored actions.
struct Game {
void make_turn();
void revert_turn();
void forward_until(size_t turn = 100, size_t draw_pile_break = 0);
std::unique_ptr<HanabiStateIF> state;
std::vector<Action> actions;
unsigned next_action;
};
inline std::ostream &operator<<(std::ostream &os, HanabiStateIF const &hanabi_state); inline std::ostream &operator<<(std::ostream &os, HanabiStateIF const &hanabi_state);
template <suit_t num_suits, player_t num_players, hand_index_t hand_size> template <suit_t num_suits, player_t num_players, hand_index_t hand_size>

View file

@ -95,47 +95,84 @@ namespace Download {
return boost::json::parse(game_json).as_object(); return boost::json::parse(game_json).as_object();
} }
template<std::size_t num_suits, Hanabi::player_t num_players, std::size_t hand_size> std::unique_ptr<Hanabi::HanabiStateIF> get_base_state(
std::unique_ptr<Hanabi::HanabiStateIF> produce_state( std::size_t num_suits,
const std::vector<Hanabi::Card>& deck, Hanabi::player_t num_players,
const std::vector<Action>& actions, std::vector<Hanabi::Card> const & deck,
size_t start_turn, std::optional<uint8_t> score_goal) {
size_t draw_pile_break = 0,
std::optional<uint8_t> score_goal = std::nullopt
) {
uint8_t actual_score_goal = score_goal.value_or(5 * num_suits); uint8_t actual_score_goal = score_goal.value_or(5 * num_suits);
auto game = std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<num_suits, num_players, hand_size>(deck, actual_score_goal)); switch(num_players) {
std::uint8_t index; case 2:
for (size_t i = 0; i < std::min(start_turn - 1, actions.size()); i++) { switch(num_suits) {
if (game->draw_pile_size() == draw_pile_break) { case 3:
break; return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<3,2,5>(deck, actual_score_goal));
case 4:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<4,2,5>(deck, actual_score_goal));
case 5:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<5,2,5>(deck, actual_score_goal));
case 6:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<6,2,5>(deck, actual_score_goal));
default:
throw std::runtime_error("Invalid number of suits: " + std::to_string(num_suits));
} }
switch(actions[i].type) { case 3:
case Hanabi::ActionType::color_clue: switch(num_suits) {
case Hanabi::ActionType::rank_clue: case 3:
game->give_clue(); return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<3,3,5>(deck, actual_score_goal));
break; case 4:
case Hanabi::ActionType::discard: return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<4,3,5>(deck, actual_score_goal));
index = game->find_card_in_hand(deck[actions[i].target]); case 5:
ASSERT(index != std::uint8_t(-1)); return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<5,3,5>(deck, actual_score_goal));
game->discard(index); case 6:
break; return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<6,3,5>(deck, actual_score_goal));
case Hanabi::ActionType::play: default:
index = game->find_card_in_hand(deck[actions[i].target]); throw std::runtime_error("Invalid number of suits: " + std::to_string(num_suits));
ASSERT(index != std::uint8_t(-1));
game->play(index);
break;
case Hanabi::ActionType::vote_terminate_players:
case Hanabi::ActionType::vote_terminate:
case Hanabi::ActionType::end_game:
return game;
} }
case 4:
switch(num_suits) {
case 3:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<3,4,4>(deck, actual_score_goal));
case 4:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<4,4,4>(deck, actual_score_goal));
case 5:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<5,4,4>(deck, actual_score_goal));
case 6:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<6,4,4>(deck, actual_score_goal));
default:
throw std::runtime_error("Invalid number of suits: " + std::to_string(num_suits));
}
case 5:
switch(num_suits) {
case 3:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<3,5,4>(deck, actual_score_goal));
case 4:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<4,5,4>(deck, actual_score_goal));
case 5:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<5,5,4>(deck, actual_score_goal));
case 6:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<6,5,4>(deck, actual_score_goal));
default:
throw std::runtime_error("Invalid number of suits: " + std::to_string(num_suits));
}
case 6:
switch(num_suits) {
case 3:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<3,6,3>(deck, actual_score_goal));
case 4:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<4,6,3>(deck, actual_score_goal));
case 5:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<5,6,3>(deck, actual_score_goal));
case 6:
return std::unique_ptr<Hanabi::HanabiStateIF>(new Hanabi::HanabiState<6,6,3>(deck, actual_score_goal));
default:
throw std::runtime_error("Invalid number of suits: " + std::to_string(num_suits));
}
default:
throw std::runtime_error("Invalid number of players: " + std::to_string(num_players));
} }
game->init_backtracking_information();
return game;
} }
std::unique_ptr<Hanabi::HanabiStateIF> get_game(std::variant<int, const char*> game_spec, unsigned turn, size_t draw_pile_break, std::optional<uint8_t> score_goal) { Hanabi::Game get_game(std::variant<int, const char*> game_spec, std::optional<uint8_t> score_goal){
const std::optional<boost::json::object> game_json_opt = [&game_spec]() { const std::optional<boost::json::object> game_json_opt = [&game_spec]() {
if (game_spec.index() == 0) { if (game_spec.index() == 0) {
return download_game_json(std::get<int>(game_spec)); return download_game_json(std::get<int>(game_spec));
@ -145,84 +182,27 @@ namespace Download {
}(); }();
if (!game_json_opt.has_value() or game_json_opt.value().empty()) { if (!game_json_opt.has_value() or game_json_opt.value().empty()) {
return nullptr; return {nullptr, {}, 0};
} }
const boost::json::object& game_json = game_json_opt.value(); const boost::json::object& game_json = game_json_opt.value();
const auto [deck, num_suits] = parse_deck(game_json.at("deck")); const auto [deck, num_suits] = parse_deck(game_json.at("deck"));
const std::vector<Action> actions = parse_actions(game_json.at("actions"));
const size_t num_players = game_json.at("players").as_array().size(); const size_t num_players = game_json.at("players").as_array().size();
switch(num_players) { // Convert the actions from hanab.live format into local format used
case 2: const std::vector<Action> hanab_live_actions = parse_actions(game_json.at("actions"));
switch(num_suits) { std::vector<Hanabi::Action> actions;
case 3: std::transform(
return produce_state<3,2,5>(deck, actions, turn, draw_pile_break, score_goal); hanab_live_actions.begin(),
case 4: hanab_live_actions.end(),
return produce_state<4,2,5>(deck, actions, turn, draw_pile_break, score_goal); std::back_inserter(actions),
case 5: [&deck](Action const & action){
return produce_state<5,2,5>(deck, actions, turn, draw_pile_break, score_goal); return Hanabi::Action {action.type, deck[action.target]};
case 6:
return produce_state<6,2,5>(deck, actions, turn, draw_pile_break, score_goal);
default:
throw std::runtime_error("Invalid number of suits: " + std::to_string(num_suits));
}
case 3:
switch(num_suits) {
case 3:
return produce_state<3,3,5>(deck, actions, turn, draw_pile_break, score_goal);
case 4:
return produce_state<4,3,5>(deck, actions, turn, draw_pile_break, score_goal);
case 5:
return produce_state<5,3,5>(deck, actions, turn, draw_pile_break, score_goal);
case 6:
return produce_state<6,3,5>(deck, actions, turn, draw_pile_break, score_goal);
default:
throw std::runtime_error("Invalid number of suits: " + std::to_string(num_suits));
}
case 4:
switch(num_suits) {
case 3:
return produce_state<3,4,4>(deck, actions, turn, draw_pile_break, score_goal);
case 4:
return produce_state<4,4,4>(deck, actions, turn, draw_pile_break, score_goal);
case 5:
return produce_state<5,4,4>(deck, actions, turn, draw_pile_break, score_goal);
case 6:
return produce_state<6,4,4>(deck, actions, turn, draw_pile_break, score_goal);
default:
throw std::runtime_error("Invalid number of suits: " + std::to_string(num_suits));
}
case 5:
switch(num_suits) {
case 3:
return produce_state<3,5,4>(deck, actions, turn, draw_pile_break, score_goal);
case 4:
return produce_state<4,5,4>(deck, actions, turn, draw_pile_break, score_goal);
case 5:
return produce_state<5,5,4>(deck, actions, turn, draw_pile_break, score_goal);
case 6:
return produce_state<6,5,4>(deck, actions, turn, draw_pile_break, score_goal);
default:
throw std::runtime_error("Invalid number of suits: " + std::to_string(num_suits));
}
case 6:
switch(num_suits) {
case 3:
return produce_state<3,6,3>(deck, actions, turn, draw_pile_break, score_goal);
case 4:
return produce_state<4,6,3>(deck, actions, turn, draw_pile_break, score_goal);
case 5:
return produce_state<5,6,3>(deck, actions, turn, draw_pile_break, score_goal);
case 6:
return produce_state<6,6,3>(deck, actions, turn, draw_pile_break, score_goal);
default:
throw std::runtime_error("Invalid number of suits: " + std::to_string(num_suits));
}
default:
throw std::runtime_error("Invalid number of players: " + std::to_string(num_players));
} }
);
return {get_base_state(num_suits, num_players, deck, score_goal), actions, 0};
} }
} // namespace Download } // namespace Download

View file

@ -13,8 +13,8 @@
namespace Hanabi { namespace Hanabi {
void analyze_game_and_start_cli(std::variant<int, const char*> game_id, int turn, int draw_pile_size, std::optional<uint8_t> score_goal, void analyze_game_and_start_cli(std::variant<int, const char*> game_id, int turn, int draw_pile_size, std::optional<uint8_t> score_goal,
bool start_cli) { bool start_cli) {
auto game = Download::get_game(game_id, turn, draw_pile_size, score_goal); auto game = Download::get_game(game_id, score_goal);
if (game == nullptr) { if (game.state == nullptr) {
if(game_id.index() == 0) { if(game_id.index() == 0) {
std::cout << "Failed to download game " << std::get<int>(game_id) << " from hanab.live." << std::endl; std::cout << "Failed to download game " << std::get<int>(game_id) << " from hanab.live." << std::endl;
} else { } else {
@ -23,9 +23,12 @@ namespace Hanabi {
return; return;
} }
std::cout << "Analysing state: " << std::endl << std::endl << *game << std::endl; game.forward_until(turn, draw_pile_size);
std::cout << "Analysing state: " << std::endl << std::endl << *game.state << std::endl;
game.state->init_backtracking_information();
auto start = std::chrono::high_resolution_clock::now(); auto start = std::chrono::high_resolution_clock::now();
auto res = game->evaluate_state(); auto res = game.state->evaluate_state();
auto end = std::chrono::high_resolution_clock::now(); auto end = std::chrono::high_resolution_clock::now();
std::cout.precision(10); std::cout.precision(10);
@ -33,13 +36,13 @@ namespace Hanabi {
std::cout << "Probability with optimal play: "; std::cout << "Probability with optimal play: ";
print_probability(std::cout, res) << std::endl; print_probability(std::cout, res) << std::endl;
std::cout << "Took " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start) << "." << std::endl; std::cout << "Took " << std::chrono::duration_cast<std::chrono::milliseconds>(end - start) << "." << std::endl;
std::cout << "Visited " << game->enumerated_states() << " states." << std::endl; std::cout << "Visited " << game.state->enumerated_states() << " states." << std::endl;
std::cout << "Enumerated " << game->position_tablebase().size() << " unique game states. " << std::endl; std::cout << "Enumerated " << game.state->position_tablebase().size() << " unique game states. " << std::endl;
if (start_cli) { if (start_cli) {
std::cout << std::endl; std::cout << std::endl;
std::cout << "Dropping into interactive command line to explore result (type 'help'):" << std::endl; std::cout << "Dropping into interactive command line to explore result (type 'help'):" << std::endl;
auto game_shared = std::shared_ptr<HanabiStateIF>(game.release()); auto game_shared = std::shared_ptr<HanabiStateIF>(game.state.release());
auto states = game_shared->possible_next_states(0, false); auto states = game_shared->possible_next_states(0, false);
cli(game_shared); cli(game_shared);
} }