Split GameState into multiple files

This now allows to import a light-weight header containing
the abstract interface separately from the templated header
that manages the actual backtracking, thus speeding up compilation.
This commit is contained in:
Maximilian Keßler 2023-11-15 22:58:09 +01:00
parent 0dbeb6e202
commit 3244213daa
Signed by: max
GPG key ID: BCC5A619923C0BA5
7 changed files with 312 additions and 283 deletions

View file

@ -17,12 +17,15 @@ include_directories(.)
include_directories(${Boost_INCLUDE_DIR}) include_directories(${Boost_INCLUDE_DIR})
add_executable(endgame-analyzer src/main.cpp src/state_explorer.cpp src/download.cpp add_executable(endgame-analyzer src/main.cpp src/state_explorer.cpp src/download.cpp
src/game_state.cpp
include/null_buffer.h include/null_buffer.h
include/command_line_interface.h include/command_line_interface.h
src/command_line_interface.cpp src/command_line_interface.cpp
include/parse_game.h include/parse_game.h
src/parse_game.cpp src/parse_game.cpp
include/hanabi_types.hpp
include/game_interface.h
src/hanabi_types.cpp
src/game_interface.cpp
) )
target_link_libraries(endgame-analyzer cpr) target_link_libraries(endgame-analyzer cpr)

91
include/game_interface.h Normal file
View file

@ -0,0 +1,91 @@
#ifndef DYNAMIC_PROGRAM_GAME_INTERFACE_H
#define DYNAMIC_PROGRAM_GAME_INTERFACE_H
#include <cstddef>
#include <iosfwd>
#include <vector>
#include <unordered_map>
#include <memory>
#include "hanabi_types.hpp"
namespace Hanabi
{
struct CardMultiplicity
{
Card card;
unsigned multiplicity;
bool operator==(const CardMultiplicity &) const = default;
};
class HanabiStateIF {
public:
virtual void give_clue() = 0;
virtual void discard(hand_index_t index) = 0;
virtual void play(hand_index_t index) = 0;
virtual void rotate_next_draw(const Card& card) = 0;
virtual ActionType last_action_type() const = 0;
virtual void revert() = 0;
virtual void modify_clues(clue_t change) = 0;
virtual void set_clues(clue_t clues) = 0;
[[nodiscard]] virtual player_t turn() const = 0;
[[nodiscard]] virtual clue_t num_clues() const = 0;
[[nodiscard]] virtual unsigned score() const = 0;
[[nodiscard]] virtual std::vector<std::vector<Card>> hands() const = 0;
[[nodiscard]] virtual std::vector<Card> cur_hand() const = 0;
[[nodiscard]] virtual size_t draw_pile_size() const = 0;
[[nodiscard]] virtual bool is_trash(const Card& card) const = 0;
[[nodiscard]] virtual bool is_playable(const Card& card) const = 0;
[[nodiscard]] virtual bool is_relative_state_initialized() const = 0;
[[nodiscard]] virtual hand_index_t find_card_in_hand(const Card& card) const = 0;
[[nodiscard]] virtual std::uint64_t enumerated_states() const = 0;
[[nodiscard]] virtual const std::unordered_map<unsigned long, probability_t>& position_tablebase() const = 0;
virtual void init_backtracking_information() = 0;
virtual probability_t evaluate_state() = 0;
[[nodiscard]] virtual std::optional<probability_t> lookup() const = 0;
[[nodiscard]] virtual std::uint64_t unique_id() const = 0;
[[nodiscard]] virtual std::pair<std::vector<std::uint64_t>, std::vector<Card>> dump_unique_id_parts() const = 0;
virtual std::vector<std::pair<Action, std::optional<probability_t>>> get_reasonable_actions() = 0;
virtual std::vector<std::pair<CardMultiplicity, std::optional<probability_t>>> possible_next_states(hand_index_t index, bool play) = 0;
virtual ~HanabiStateIF() = default;
protected:
virtual void print(std::ostream& os) const = 0;
friend std::ostream& operator<<(std::ostream&, HanabiStateIF const&);
};
std::ostream &operator<<(std::ostream &os, HanabiStateIF const &hanabi_state);
struct Game {
Game(std::unique_ptr<HanabiStateIF> state, std::vector<Action> actions, std::vector<Card> deck);
[[nodiscard]] unsigned cur_turn() const;
void make_turn();
void revert_turn();
bool goto_draw_pile_size(size_t draw_pile_break);
bool goto_turn(size_t turn);
[[nodiscard]] bool holds_state() const;
std::unique_ptr<HanabiStateIF> state;
std::vector<Action> actions;
std::vector<Card> deck;
unsigned next_action;
};
}
#endif //DYNAMIC_PROGRAM_GAME_INTERFACE_H

View file

@ -16,135 +16,15 @@
#include <boost/container/static_vector.hpp> #include <boost/container/static_vector.hpp>
#include <boost/rational.hpp> #include <boost/rational.hpp>
#include "game_interface.h"
namespace Hanabi { namespace Hanabi {
using rank_t = std::uint8_t; template<size_t num_suits>
using suit_t = std::uint8_t;
using clue_t = std::int8_t;
using player_t = std::uint8_t;
using hand_index_t = std::uint8_t;
using probability_base_type = unsigned long;
using rational_probability = boost::rational<probability_base_type>;
/**
* Define macro
* NUSE_RATIONAL_PROBABILITIES
* to use floating-point arithematic for the stored probabilities
* instead of rational representations
*/
#ifndef NUSE_RATIONAL_PROBABILITIES
using probability_t = boost::rational<probability_base_type>;
#else
using probability_t = double;
#endif
inline std::ostream& print_probability(std::ostream& os, double prob);
inline std::ostream& print_probability(std::ostream& os, const rational_probability& prob);
template<typename T>
std::ostream& print_probability(std::ostream& os, const std::optional<T>& prob);
/**
* We will generally assume that stacks are played from n to 0
* Playing a 0 will yield a clue
* Therefore, for the default hanabi, we will play 4,3,2,1,0 in that order
* on each stack. A stack with no cards played implicitly has value 5 on it
* This is just easier to implement, since then the remaining number of cards
* to be played is always the current number of the stack
*/
constexpr rank_t starting_card_rank = 5;
constexpr suit_t max_suit_index = 5;
constexpr size_t max_card_duplicity = 3;
constexpr clue_t max_num_clues = 8;
constexpr uint8_t not_in_starting_hand = std::numeric_limits<uint8_t>::max();
constexpr hand_index_t invalid_hand_idx = std::numeric_limits<hand_index_t>::max();
// We might want to change these at runtime to adapt to other variants.
// However, a global variable is used so that we can have an output operator for cards reading from here
// Note that this is therefore not static so that we have external linking
inline std::array<char, 6> suit_initials = {'r', 'y', 'g', 'b', 'p', 't'};
struct Card {
suit_t suit;
rank_t rank;
uint8_t local_index;
bool in_starting_hand;
bool initial_trash;
inline bool operator==(const Card &other) const;
};
namespace Cards {
static constexpr Card r0 = {0, 5};
static constexpr Card r1 = {0, 4};
static constexpr Card r2 = {0, 3};
static constexpr Card r3 = {0, 2};
static constexpr Card r4 = {0, 1};
static constexpr Card r5 = {0, 0};
static constexpr Card y0 = {1, 5};
static constexpr Card y1 = {1, 4};
static constexpr Card y2 = {1, 3};
static constexpr Card y3 = {1, 2};
static constexpr Card y4 = {1, 1};
static constexpr Card y5 = {1, 0};
static constexpr Card g0 = {2, 5};
static constexpr Card g1 = {2, 4};
static constexpr Card g2 = {2, 3};
static constexpr Card g3 = {2, 2};
static constexpr Card g4 = {2, 1};
static constexpr Card g5 = {2, 0};
static constexpr Card b0 = {3, 5};
static constexpr Card b1 = {3, 4};
static constexpr Card b2 = {3, 3};
static constexpr Card b3 = {3, 2};
static constexpr Card b4 = {3, 1};
static constexpr Card b5 = {3, 0};
static constexpr Card p0 = {4, 5};
static constexpr Card p1 = {4, 4};
static constexpr Card p2 = {4, 3};
static constexpr Card p3 = {4, 2};
static constexpr Card p4 = {4, 1};
static constexpr Card p5 = {4, 0};
static constexpr Card t0 = {5, 5};
static constexpr Card t1 = {5, 4};
static constexpr Card t2 = {5, 3};
static constexpr Card t3 = {5, 2};
static constexpr Card t4 = {5, 1};
static constexpr Card t5 = {5, 0};
static constexpr Card unknown = {std::numeric_limits<suit_t>::max(), 0};
static constexpr Card trash = {std::numeric_limits<suit_t>::max(), 1};
}
}
namespace Hanabi {
inline std::string to_string(const Hanabi::Card &card);
inline std::ostream &operator<<(std::ostream &os, const Card &card);
/**
* To store:
* - Draw pile size
* - Distribution of cards
* - Which cards exist?
* - Number of clues
*/
template <size_t num_suits>
using Stacks = std::array<rank_t, num_suits>; using Stacks = std::array<rank_t, num_suits>;
template <size_t num_suits> template<size_t num_suits>
std::ostream& operator<<(std::ostream &os, const Stacks<num_suits> &stacks); std::ostream &operator<<(std::ostream &os, const Stacks<num_suits> &stacks);
struct CardMultiplicity {
Card card;
unsigned multiplicity;
bool operator==(const CardMultiplicity &) const = default;
};
template<typename T> template<typename T>
struct InnerCardArray { struct InnerCardArray {
@ -177,100 +57,9 @@ private:
std::array<inner_array_t , num_suits> _array {}; std::array<inner_array_t , num_suits> _array {};
}; };
enum class ActionType : std::uint8_t {
play = 0,
discard = 1,
clue = 2,
color_clue = 2,
rank_clue = 3,
end_game = 4,
vote_terminate_players = 5,
vote_terminate = 10,
};
struct Action {
ActionType type {};
Card card {};
};
inline std::ostream& operator<<(std::ostream& os, const Action& action);
/** Would like to have 2 versions:
* All:
* - support playing cards, querying basic information
* - support going back, but with a different interface: efficient (needs arguments, does not store) or using a stack
*
*/
class HanabiStateIF {
public:
virtual void give_clue() = 0;
virtual void discard(hand_index_t index) = 0;
virtual void play(hand_index_t index) = 0;
virtual void rotate_next_draw(const Card& card) = 0;
virtual ActionType last_action_type() const = 0;
virtual void revert() = 0;
virtual void modify_clues(clue_t change) = 0;
virtual void set_clues(clue_t clues) = 0;
[[nodiscard]] virtual player_t turn() const = 0;
[[nodiscard]] virtual clue_t num_clues() const = 0;
[[nodiscard]] virtual unsigned score() const = 0;
[[nodiscard]] virtual std::vector<std::vector<Card>> hands() const = 0;
[[nodiscard]] virtual std::vector<Card> cur_hand() const = 0;
[[nodiscard]] virtual size_t draw_pile_size() const = 0;
[[nodiscard]] virtual bool is_trash(const Card& card) const = 0;
[[nodiscard]] virtual bool is_playable(const Card& card) const = 0;
[[nodiscard]] virtual bool is_relative_state_initialized() const = 0;
[[nodiscard]] virtual hand_index_t find_card_in_hand(const Card& card) const = 0;
[[nodiscard]] virtual std::uint64_t enumerated_states() const = 0;
[[nodiscard]] virtual const std::unordered_map<unsigned long, probability_t>& position_tablebase() const = 0;
virtual void init_backtracking_information() = 0;
virtual probability_t evaluate_state() = 0;
[[nodiscard]] virtual std::optional<probability_t> lookup() const = 0;
[[nodiscard]] virtual std::uint64_t unique_id() const = 0;
[[nodiscard]] virtual std::pair<std::vector<std::uint64_t>, std::vector<Card>> dump_unique_id_parts() const = 0;
virtual std::vector<std::pair<Action, std::optional<probability_t>>> get_reasonable_actions() = 0;
virtual std::vector<std::pair<CardMultiplicity, std::optional<probability_t>>> possible_next_states(hand_index_t index, bool play) = 0;
virtual ~HanabiStateIF() = default;
protected:
virtual void print(std::ostream& os) const = 0;
friend std::ostream& operator<<(std::ostream&, HanabiStateIF const&);
};
// A game mimics a game state together with a list of actions and allows to traverse the game // A game mimics a game state together with a list of actions and allows to traverse the game
// history by making and reverting the stored actions. // history by making and reverting the stored actions.
struct Game {
Game(std::unique_ptr<HanabiStateIF> state, std::vector<Action> actions, std::vector<Card> deck);
unsigned cur_turn() const;
void make_turn();
void revert_turn();
bool goto_draw_pile_size(size_t draw_pile_break);
bool goto_turn(size_t turn);
bool holds_state();
std::unique_ptr<HanabiStateIF> state;
std::vector<Action> actions;
std::vector<Card> deck;
unsigned next_action;
};
inline std::ostream &operator<<(std::ostream &os, HanabiStateIF const &hanabi_state);
template <suit_t num_suits, player_t num_players, hand_index_t hand_size> template <suit_t num_suits, player_t num_players, hand_index_t hand_size>
class HanabiState : public HanabiStateIF { class HanabiState : public HanabiStateIF {
public: public:

View file

@ -6,65 +6,6 @@
namespace Hanabi { namespace Hanabi {
template<typename T>
std::ostream& print_probability(std::ostream& os, const std::optional<T>& prob) {
if (prob.has_value()) {
return print_probability(os, prob.value());
} else {
os << "unknown";
}
return os;
}
std::ostream& print_probability(std::ostream& os, const rational_probability & prob) {
os << prob << " ~ " << std::setprecision(5) << boost::rational_cast<double>(prob) * 100 << "%";
return os;
}
std::ostream& print_probability(std::ostream& os, double prob) {
os << std::setprecision(5) << prob;
return os;
}
std::ostream &operator<<(std::ostream &os, HanabiStateIF const &hanabi_state) {
hanabi_state.print(os);
return os;
}
std::string to_string(const Hanabi::Card &card) {
if (card == Hanabi::Cards::trash) {
return "kt";
} else {
return Hanabi::suit_initials[card.suit] + std::to_string(5 - card.rank);
}
}
std::ostream &operator<<(std::ostream &os, Action const& action) {
switch(action.type) {
case ActionType::play:
os << "play " + to_string(action.card);
break;
case ActionType::discard:
os << "discard";
break;
case ActionType::clue:
os << "clue";
break;
default:
break;
}
return os;
}
bool Card::operator==(const Card &other) const {
return suit == other.suit and rank == other.rank;
}
std::ostream &operator<<(std::ostream &os, const Card &card) {
os << to_string(card);
return os;
}
template<size_t num_suits> template<size_t num_suits>
std::ostream &operator<<(std::ostream &os, const Stacks<num_suits> &stacks) { std::ostream &operator<<(std::ostream &os, const Stacks<num_suits> &stacks) {
for (size_t i = 0; i < stacks.size(); i++) { for (size_t i = 0; i < stacks.size(); i++) {

157
include/hanabi_types.hpp Normal file
View file

@ -0,0 +1,157 @@
#ifndef DYNAMIC_PROGRAM_HANABI_TYPES_H
#define DYNAMIC_PROGRAM_HANABI_TYPES_H
#include <cstdint>
#include <iosfwd>
#include <array>
#include <optional>
#include <boost/rational.hpp>
namespace Hanabi {
using rank_t = std::uint8_t;
using suit_t = std::uint8_t;
using clue_t = std::int8_t;
using player_t = std::uint8_t;
using hand_index_t = std::uint8_t;
using probability_base_type = unsigned long;
using rational_probability = boost::rational<probability_base_type>;
/**
* Define macro
* NUSE_RATIONAL_PROBABILITIES
* to use floating-point arithematic for the stored probabilities
* instead of rational representations
*/
#ifndef NUSE_RATIONAL_PROBABILITIES
using probability_t = boost::rational<probability_base_type>;
#else
using probability_t = double;
#endif
std::ostream& print_probability(std::ostream& os, const rational_probability& prob);
std::ostream& print_probability(std::ostream& os, double prob);
template<typename T>
std::ostream& print_probability(std::ostream& os, const std::optional<T>& prob);
/**
* We will generally assume that stacks are played from n to 0
* Playing a 0 will yield a clue
* Therefore, for the default hanabi, we will play 4,3,2,1,0 in that order
* on each stack. A stack with no cards played implicitly has value 5 on it
* This is just easier to implement, since then the remaining number of cards
* to be played is always the current number of the stack
*/
constexpr rank_t starting_card_rank = 5;
constexpr suit_t max_suit_index = 5;
constexpr size_t max_card_duplicity = 3;
constexpr clue_t max_num_clues = 8;
constexpr hand_index_t invalid_hand_idx = std::numeric_limits<hand_index_t>::max();
// We might want to change these at runtime to adapt to other variants.
// However, a global variable is used so that we can have an output operator for cards reading from here
// Note that this is therefore not static so that we have external linking
inline std::array<char, 6> suit_initials = {'r', 'y', 'g', 'b', 'p', 't'};
struct Card {
suit_t suit;
rank_t rank;
// These attributes are not needed in general for a card,
// they represent internal states during backtracking.
uint8_t local_index;
bool in_starting_hand;
bool initial_trash;
/**
* @brief Compares cards *only* regarding suit and rank.
* This is inlined as this is a runtime critical function when backtracking.
*/
inline bool operator==(const Card &other) const;
};
enum class ActionType : std::uint8_t {
play = 0,
discard = 1,
clue = 2,
color_clue = 2,
rank_clue = 3,
end_game = 4,
vote_terminate_players = 5,
vote_terminate = 10,
};
struct Action {
ActionType type {};
Card card {};
};
// Output utilities for Cards and Actions
std::string to_string(const Card &card);
std::ostream &operator<<(std::ostream &os, const Card & card);
std::ostream& operator<<(std::ostream& os, const Action& action);
namespace Cards {
static constexpr Card r0 = {0, 5};
static constexpr Card r1 = {0, 4};
static constexpr Card r2 = {0, 3};
static constexpr Card r3 = {0, 2};
static constexpr Card r4 = {0, 1};
static constexpr Card r5 = {0, 0};
static constexpr Card y0 = {1, 5};
static constexpr Card y1 = {1, 4};
static constexpr Card y2 = {1, 3};
static constexpr Card y3 = {1, 2};
static constexpr Card y4 = {1, 1};
static constexpr Card y5 = {1, 0};
static constexpr Card g0 = {2, 5};
static constexpr Card g1 = {2, 4};
static constexpr Card g2 = {2, 3};
static constexpr Card g3 = {2, 2};
static constexpr Card g4 = {2, 1};
static constexpr Card g5 = {2, 0};
static constexpr Card b0 = {3, 5};
static constexpr Card b1 = {3, 4};
static constexpr Card b2 = {3, 3};
static constexpr Card b3 = {3, 2};
static constexpr Card b4 = {3, 1};
static constexpr Card b5 = {3, 0};
static constexpr Card p0 = {4, 5};
static constexpr Card p1 = {4, 4};
static constexpr Card p2 = {4, 3};
static constexpr Card p3 = {4, 2};
static constexpr Card p4 = {4, 1};
static constexpr Card p5 = {4, 0};
static constexpr Card t0 = {5, 5};
static constexpr Card t1 = {5, 4};
static constexpr Card t2 = {5, 3};
static constexpr Card t3 = {5, 2};
static constexpr Card t4 = {5, 1};
static constexpr Card t5 = {5, 0};
static constexpr Card unknown = {std::numeric_limits<suit_t>::max(), 0};
static constexpr Card trash = {std::numeric_limits<suit_t>::max(), 1};
}
//// INLINE SECTION
bool Card::operator==(const Card &other) const {
return suit == other.suit and rank == other.rank;
}
template<typename T>
std::ostream& print_probability(std::ostream& os, const std::optional<T>& prob) {
if (prob.has_value()) {
return print_probability(os, prob.value());
} else {
os << "unknown";
}
return os;
}
} // namespace Hanabi
#endif //DYNAMIC_PROGRAM_HANABI_TYPES_H

View file

@ -1,11 +1,16 @@
#include <iostream> #include "game_interface.h"
#include <utility> #include "myassert.h"
#include "game_state.h"
namespace Hanabi { namespace Hanabi {
std::ostream &operator<<(std::ostream &os, HanabiStateIF const &hanabi_state)
{
hanabi_state.print(os);
return os;
}
Game::Game(std::unique_ptr<HanabiStateIF> state, std::vector<Action> actions, std::vector<Card> deck): Game::Game(std::unique_ptr<HanabiStateIF> state, std::vector<Action> actions, std::vector<Card> deck):
state(std::move(state)), actions(std::move(actions)), deck(std::move(deck)), next_action(0) state(std::move(state)), actions(std::move(actions)), deck(std::move(deck)), next_action(0)
{ {
// If there is a 'Null' action that only signals the game's end, we want to get rid of it now, // If there is a 'Null' action that only signals the game's end, we want to get rid of it now,
// as this will mess with our moves. // as this will mess with our moves.
@ -77,7 +82,7 @@ namespace Hanabi {
return next_action + 1 == turn; return next_action + 1 == turn;
} }
bool Game::holds_state() bool Game::holds_state() const
{ {
return state != nullptr; return state != nullptr;
} }
@ -92,6 +97,4 @@ namespace Hanabi {
} }
return state->draw_pile_size() == draw_pile_break; return state->draw_pile_size() == draw_pile_break;
} }
}
}

45
src/hanabi_types.cpp Normal file
View file

@ -0,0 +1,45 @@
#include "hanabi_types.hpp"
namespace Hanabi {
std::ostream &operator<<(std::ostream &os, Action const& action) {
switch(action.type) {
case ActionType::play:
os << "play " + to_string(action.card);
break;
case ActionType::discard:
os << "discard";
break;
case ActionType::clue:
os << "clue";
break;
default:
break;
}
return os;
}
std::string to_string(const Hanabi::Card &card) {
if (card == Hanabi::Cards::trash) {
return "kt";
} else {
return Hanabi::suit_initials[card.suit] + std::to_string(5 - card.rank);
}
}
std::ostream &operator<<(std::ostream &os, const Card &card) {
os << to_string(card);
return os;
}
std::ostream& print_probability(std::ostream& os, const rational_probability & prob) {
os << prob << " ~ " << std::setprecision(5) << boost::rational_cast<double>(prob) * 100 << "%";
return os;
}
std::ostream& print_probability(std::ostream& os, double prob) {
os << std::setprecision(5) << prob;
return os;
}
} // namespace Hanabi