Endgame-Analyzer/include/parallel_hashmap/phmap.h

5206 lines
196 KiB
C
Raw Normal View History

#if !defined(phmap_h_guard_)
#define phmap_h_guard_
// ---------------------------------------------------------------------------
// Copyright (c) 2019, Gregory Popovitch - greg7mdp@gmail.com
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Includes work from abseil-cpp (https://github.com/abseil/abseil-cpp)
// with modifications.
//
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
// IMPLEMENTATION DETAILS
//
// The table stores elements inline in a slot array. In addition to the slot
// array the table maintains some control state per slot. The extra state is one
// byte per slot and stores empty or deleted marks, or alternatively 7 bits from
// the hash of an occupied slot. The table is split into logical groups of
// slots, like so:
//
// Group 1 Group 2 Group 3
// +---------------+---------------+---------------+
// | | | | | | | | | | | | | | | | | | | | | | | | |
// +---------------+---------------+---------------+
//
// On lookup the hash is split into two parts:
// - H2: 7 bits (those stored in the control bytes)
// - H1: the rest of the bits
// The groups are probed using H1. For each group the slots are matched to H2 in
// parallel. Because H2 is 7 bits (128 states) and the number of slots per group
// is low (8 or 16) in almost all cases a match in H2 is also a lookup hit.
//
// On insert, once the right group is found (as in lookup), its slots are
// filled in order.
//
// On erase a slot is cleared. In case the group did not have any empty slots
// before the erase, the erased slot is marked as deleted.
//
// Groups without empty slots (but maybe with deleted slots) extend the probe
// sequence. The probing algorithm is quadratic. Given N the number of groups,
// the probing function for the i'th probe is:
//
// P(0) = H1 % N
//
// P(i) = (P(i - 1) + i) % N
//
// This probing function guarantees that after N probes, all the groups of the
// table will be probed exactly once.
//
// The control state and slot array are stored contiguously in a shared heap
// allocation. The layout of this allocation is: `capacity()` control bytes,
// one sentinel control byte, `Group::kWidth - 1` cloned control bytes,
// <possible padding>, `capacity()` slots. The sentinel control byte is used in
// iteration so we know when we reach the end of the table. The cloned control
// bytes at the end of the table are cloned from the beginning of the table so
// groups that begin near the end of the table can see a full group. In cases in
// which there are more than `capacity()` cloned control bytes, the extra bytes
// are `kEmpty`, and these ensure that we always see at least one empty slot and
// can stop an unsuccessful search.
// ---------------------------------------------------------------------------
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#pragma warning(disable : 4324) // structure was padded due to alignment specifier
#pragma warning(disable : 4514) // unreferenced inline function has been removed
#pragma warning(disable : 4623) // default constructor was implicitly defined as deleted
#pragma warning(disable : 4625) // copy constructor was implicitly defined as deleted
#pragma warning(disable : 4626) // assignment operator was implicitly defined as deleted
#pragma warning(disable : 4710) // function not inlined
#pragma warning(disable : 4711) // selected for automatic inline expansion
#pragma warning(disable : 4820) // '6' bytes padding added after data member
#pragma warning(disable : 4868) // compiler may not enforce left-to-right evaluation order in braced initializer list
#pragma warning(disable : 5027) // move assignment operator was implicitly defined as deleted
#pragma warning(disable : 5045) // Compiler will insert Spectre mitigation for memory load if /Qspectre switch specified
#endif
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iterator>
#include <limits>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
#include <array>
#include <cassert>
#include <atomic>
#include "phmap_fwd_decl.h"
#include "phmap_utils.h"
#include "phmap_base.h"
#if PHMAP_HAVE_STD_STRING_VIEW
#include <string_view>
#endif
namespace phmap {
namespace priv {
// --------------------------------------------------------------------------
template <typename AllocType>
void SwapAlloc(AllocType& lhs, AllocType& rhs,
std::true_type /* propagate_on_container_swap */) {
using std::swap;
swap(lhs, rhs);
}
template <typename AllocType>
void SwapAlloc(AllocType& /*lhs*/, AllocType& /*rhs*/,
std::false_type /* propagate_on_container_swap */) {}
// --------------------------------------------------------------------------
template <size_t Width>
class probe_seq
{
public:
probe_seq(size_t hashval, size_t mask) {
assert(((mask + 1) & mask) == 0 && "not a mask");
mask_ = mask;
offset_ = hashval & mask_;
}
size_t offset() const { return offset_; }
size_t offset(size_t i) const { return (offset_ + i) & mask_; }
void next() {
index_ += Width;
offset_ += index_;
offset_ &= mask_;
}
// 0-based probe index. The i-th probe in the probe sequence.
size_t getindex() const { return index_; }
private:
size_t mask_;
size_t offset_;
size_t index_ = 0;
};
// --------------------------------------------------------------------------
template <class ContainerKey, class Hash, class Eq>
struct RequireUsableKey
{
template <class PassedKey, class... Args>
std::pair<
decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
std::declval<const PassedKey&>()))>*
operator()(const PassedKey&, const Args&...) const;
};
// --------------------------------------------------------------------------
template <class E, class Policy, class Hash, class Eq, class... Ts>
struct IsDecomposable : std::false_type {};
template <class Policy, class Hash, class Eq, class... Ts>
struct IsDecomposable<
phmap::void_t<decltype(
Policy::apply(RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
std::declval<Ts>()...))>,
Policy, Hash, Eq, Ts...> : std::true_type {};
// TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it.
// --------------------------------------------------------------------------
template <class T>
constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) {
using std::swap;
return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
}
template <class T>
constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) {
return false;
}
// --------------------------------------------------------------------------
template <typename T>
uint32_t TrailingZeros(T x) {
PHMAP_IF_CONSTEXPR(sizeof(T) == 8)
return base_internal::CountTrailingZerosNonZero64(static_cast<uint64_t>(x));
else
return base_internal::CountTrailingZerosNonZero32(static_cast<uint32_t>(x));
}
// --------------------------------------------------------------------------
template <typename T>
uint32_t LeadingZeros(T x) {
PHMAP_IF_CONSTEXPR(sizeof(T) == 8)
return base_internal::CountLeadingZeros64(static_cast<uint64_t>(x));
else
return base_internal::CountLeadingZeros32(static_cast<uint32_t>(x));
}
// --------------------------------------------------------------------------
// An abstraction over a bitmask. It provides an easy way to iterate through the
// indexes of the set bits of a bitmask. When Shift=0 (platforms with SSE),
// this is a true bitmask. On non-SSE, platforms the arithematic used to
// emulate the SSE behavior works in bytes (Shift=3) and leaves each bytes as
// either 0x00 or 0x80.
//
// For example:
// for (int i : BitMask<uint32_t, 16>(0x5)) -> yields 0, 2
// for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3
// --------------------------------------------------------------------------
template <class T, int SignificantBits, int Shift = 0>
class BitMask
{
static_assert(std::is_unsigned<T>::value, "");
static_assert(Shift == 0 || Shift == 3, "");
public:
// These are useful for unit tests (gunit).
using value_type = int;
using iterator = BitMask;
using const_iterator = BitMask;
explicit BitMask(T mask) : mask_(mask) {}
BitMask& operator++() { // ++iterator
mask_ &= (mask_ - 1); // clear the least significant bit set
return *this;
}
explicit operator bool() const { return mask_ != 0; }
uint32_t operator*() const { return LowestBitSet(); }
uint32_t LowestBitSet() const {
return priv::TrailingZeros(mask_) >> Shift;
}
uint32_t HighestBitSet() const {
return (sizeof(T) * CHAR_BIT - priv::LeadingZeros(mask_) - 1) >> Shift;
}
BitMask begin() const { return *this; }
BitMask end() const { return BitMask(0); }
uint32_t TrailingZeros() const {
return priv::TrailingZeros(mask_) >> Shift;
}
uint32_t LeadingZeros() const {
constexpr uint32_t total_significant_bits = SignificantBits << Shift;
constexpr uint32_t extra_bits = sizeof(T) * 8 - total_significant_bits;
return priv::LeadingZeros(mask_ << extra_bits) >> Shift;
}
private:
friend bool operator==(const BitMask& a, const BitMask& b) {
return a.mask_ == b.mask_;
}
friend bool operator!=(const BitMask& a, const BitMask& b) {
return a.mask_ != b.mask_;
}
T mask_;
};
// --------------------------------------------------------------------------
using ctrl_t = signed char;
using h2_t = uint8_t;
// --------------------------------------------------------------------------
// The values here are selected for maximum performance. See the static asserts
// below for details.
// --------------------------------------------------------------------------
enum Ctrl : ctrl_t
{
kEmpty = -128, // 0b10000000 or 0x80
kDeleted = -2, // 0b11111110 or 0xfe
kSentinel = -1, // 0b11111111 or 0xff
};
static_assert(
kEmpty & kDeleted & kSentinel & 0x80,
"Special markers need to have the MSB to make checking for them efficient");
static_assert(kEmpty < kSentinel && kDeleted < kSentinel,
"kEmpty and kDeleted must be smaller than kSentinel to make the "
"SIMD test of IsEmptyOrDeleted() efficient");
static_assert(kSentinel == -1,
"kSentinel must be -1 to elide loading it from memory into SIMD "
"registers (pcmpeqd xmm, xmm)");
static_assert(kEmpty == -128,
"kEmpty must be -128 to make the SIMD check for its "
"existence efficient (psignb xmm, xmm)");
static_assert(~kEmpty & ~kDeleted & kSentinel & 0x7F,
"kEmpty and kDeleted must share an unset bit that is not shared "
"by kSentinel to make the scalar test for MatchEmptyOrDeleted() "
"efficient");
static_assert(kDeleted == -2,
"kDeleted must be -2 to make the implementation of "
"ConvertSpecialToEmptyAndFullToDeleted efficient");
// --------------------------------------------------------------------------
// A single block of empty control bytes for tables without any slots allocated.
// This enables removing a branch in the hot path of find().
// --------------------------------------------------------------------------
inline ctrl_t* EmptyGroup() {
alignas(16) static constexpr ctrl_t empty_group[] = {
kSentinel, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty,
kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty};
return const_cast<ctrl_t*>(empty_group);
}
// --------------------------------------------------------------------------
inline size_t HashSeed(const ctrl_t* ctrl) {
// The low bits of the pointer have little or no entropy because of
// alignment. We shift the pointer to try to use higher entropy bits. A
// good number seems to be 12 bits, because that aligns with page size.
return reinterpret_cast<uintptr_t>(ctrl) >> 12;
}
#ifdef PHMAP_NON_DETERMINISTIC
inline size_t H1(size_t hashval, const ctrl_t* ctrl) {
// use ctrl_ pointer to add entropy to ensure
// non-deterministic iteration order.
return (hashval >> 7) ^ HashSeed(ctrl);
}
#else
inline size_t H1(size_t hashval, const ctrl_t* ) {
return (hashval >> 7);
}
#endif
inline ctrl_t H2(size_t hashval) { return (ctrl_t)(hashval & 0x7F); }
inline bool IsEmpty(ctrl_t c) { return c == kEmpty; }
inline bool IsFull(ctrl_t c) { return c >= static_cast<ctrl_t>(0); }
inline bool IsDeleted(ctrl_t c) { return c == kDeleted; }
inline bool IsEmptyOrDeleted(ctrl_t c) { return c < kSentinel; }
#if PHMAP_HAVE_SSE2
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4365) // conversion from 'int' to 'T', signed/unsigned mismatch
#endif
// --------------------------------------------------------------------------
// https://github.com/abseil/abseil-cpp/issues/209
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853
// _mm_cmpgt_epi8 is broken under GCC with -funsigned-char
// Work around this by using the portable implementation of Group
// when using -funsigned-char under GCC.
// --------------------------------------------------------------------------
inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) {
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Woverflow"
if (std::is_unsigned<char>::value) {
const __m128i mask = _mm_set1_epi8(static_cast<char>(0x80));
const __m128i diff = _mm_subs_epi8(b, a);
return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask);
}
#pragma GCC diagnostic pop
#endif
return _mm_cmpgt_epi8(a, b);
}
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
struct GroupSse2Impl
{
enum { kWidth = 16 }; // the number of slots per group
explicit GroupSse2Impl(const ctrl_t* pos) {
ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos));
}
// Returns a bitmask representing the positions of slots that match hash.
// ----------------------------------------------------------------------
BitMask<uint32_t, kWidth> Match(h2_t hash) const {
auto match = _mm_set1_epi8((char)hash);
return BitMask<uint32_t, kWidth>(
static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))));
}
// Returns a bitmask representing the positions of empty slots.
// ------------------------------------------------------------
BitMask<uint32_t, kWidth> MatchEmpty() const {
#if PHMAP_HAVE_SSSE3
// This only works because kEmpty is -128.
return BitMask<uint32_t, kWidth>(
static_cast<uint32_t>(_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl))));
#else
return Match(static_cast<h2_t>(kEmpty));
#endif
}
// Returns a bitmask representing the positions of empty or deleted slots.
// -----------------------------------------------------------------------
BitMask<uint32_t, kWidth> MatchEmptyOrDeleted() const {
auto special = _mm_set1_epi8(static_cast<char>(kSentinel));
return BitMask<uint32_t, kWidth>(
static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl))));
}
// Returns the number of trailing empty or deleted elements in the group.
// ----------------------------------------------------------------------
uint32_t CountLeadingEmptyOrDeleted() const {
auto special = _mm_set1_epi8(static_cast<char>(kSentinel));
return TrailingZeros(
static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1));
}
// ----------------------------------------------------------------------
void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
auto msbs = _mm_set1_epi8(static_cast<char>(-128));
auto x126 = _mm_set1_epi8(126);
#if PHMAP_HAVE_SSSE3
auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs);
#else
auto zero = _mm_setzero_si128();
auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl);
auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126));
#endif
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res);
}
__m128i ctrl;
};
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // PHMAP_HAVE_SSE2
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
struct GroupPortableImpl
{
enum { kWidth = 8 };
explicit GroupPortableImpl(const ctrl_t* pos)
: ctrl(little_endian::Load64(pos)) {}
BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
// For the technique, see:
// http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord
// (Determine if a word has a byte equal to n).
//
// Caveat: there are false positives but:
// - they only occur if there is a real match
// - they never occur on kEmpty, kDeleted, kSentinel
// - they will be handled gracefully by subsequent checks in code
//
// Example:
// v = 0x1716151413121110
// hash = 0x12
// retval = (v - lsbs) & ~v & msbs = 0x0000000080800000
constexpr uint64_t msbs = 0x8080808080808080ULL;
constexpr uint64_t lsbs = 0x0101010101010101ULL;
auto x = ctrl ^ (lsbs * hash);
return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs);
}
BitMask<uint64_t, kWidth, 3> MatchEmpty() const { // bit 1 of each byte is 0 for empty (but not for deleted)
constexpr uint64_t msbs = 0x8080808080808080ULL;
return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 6)) & msbs);
}
BitMask<uint64_t, kWidth, 3> MatchEmptyOrDeleted() const { // lsb of each byte is 0 for empty or deleted
constexpr uint64_t msbs = 0x8080808080808080ULL;
return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 7)) & msbs);
}
uint32_t CountLeadingEmptyOrDeleted() const {
constexpr uint64_t gaps = 0x00FEFEFEFEFEFEFEULL;
return (uint32_t)((TrailingZeros(((~ctrl & (ctrl >> 7)) | gaps) + 1) + 7) >> 3);
}
void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
constexpr uint64_t msbs = 0x8080808080808080ULL;
constexpr uint64_t lsbs = 0x0101010101010101ULL;
auto x = ctrl & msbs;
auto res = (~x + (x >> 7)) & ~lsbs;
little_endian::Store64(dst, res);
}
uint64_t ctrl;
};
#if PHMAP_HAVE_SSE2
using Group = GroupSse2Impl;
#else
using Group = GroupPortableImpl;
#endif
// The number of cloned control bytes that we copy from the beginning to the
// end of the control bytes array.
// -------------------------------------------------------------------------
constexpr size_t NumClonedBytes() { return Group::kWidth - 1; }
template <class Policy, class Hash, class Eq, class Alloc>
class raw_hash_set;
inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; }
// --------------------------------------------------------------------------
// PRECONDITION:
// IsValidCapacity(capacity)
// ctrl[capacity] == kSentinel
// ctrl[i] != kSentinel for all i < capacity
// Applies mapping for every byte in ctrl:
// DELETED -> EMPTY
// EMPTY -> EMPTY
// FULL -> DELETED
// --------------------------------------------------------------------------
inline void ConvertDeletedToEmptyAndFullToDeleted(
ctrl_t* ctrl, size_t capacity)
{
assert(ctrl[capacity] == kSentinel);
assert(IsValidCapacity(capacity));
for (ctrl_t* pos = ctrl; pos != ctrl + capacity + 1; pos += Group::kWidth) {
Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos);
}
// Copy the cloned ctrl bytes.
std::memcpy(ctrl + capacity + 1, ctrl, Group::kWidth);
ctrl[capacity] = kSentinel;
}
// --------------------------------------------------------------------------
// Rounds up the capacity to the next power of 2 minus 1, with a minimum of 1.
// --------------------------------------------------------------------------
inline size_t NormalizeCapacity(size_t n)
{
return n ? ~size_t{} >> LeadingZeros(n) : 1;
}
// --------------------------------------------------------------------------
// We use 7/8th as maximum load factor.
// For 16-wide groups, that gives an average of two empty slots per group.
// --------------------------------------------------------------------------
inline size_t CapacityToGrowth(size_t capacity)
{
assert(IsValidCapacity(capacity));
// `capacity*7/8`
PHMAP_IF_CONSTEXPR (Group::kWidth == 8) {
if (capacity == 7)
{
// x-x/8 does not work when x==7.
return 6;
}
}
return capacity - capacity / 8;
}
// --------------------------------------------------------------------------
// From desired "growth" to a lowerbound of the necessary capacity.
// Might not be a valid one and required NormalizeCapacity().
// --------------------------------------------------------------------------
inline size_t GrowthToLowerboundCapacity(size_t growth)
{
// `growth*8/7`
PHMAP_IF_CONSTEXPR (Group::kWidth == 8) {
if (growth == 7)
{
// x+(x-1)/7 does not work when x==7.
return 8;
}
}
return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7);
}
namespace hashtable_debug_internal {
// If it is a map, call get<0>().
using std::get;
template <typename T, typename = typename T::mapped_type>
auto GetKey(const typename T::value_type& pair, int) -> decltype(get<0>(pair)) {
return get<0>(pair);
}
// If it is not a map, return the value directly.
template <typename T>
const typename T::key_type& GetKey(const typename T::key_type& key, char) {
return key;
}
// --------------------------------------------------------------------------
// Containers should specialize this to provide debug information for that
// container.
// --------------------------------------------------------------------------
template <class Container, typename Enabler = void>
struct HashtableDebugAccess
{
// Returns the number of probes required to find `key` in `c`. The "number of
// probes" is a concept that can vary by container. Implementations should
// return 0 when `key` was found in the minimum number of operations and
// should increment the result for each non-trivial operation required to find
// `key`.
//
// The default implementation uses the bucket api from the standard and thus
// works for `std::unordered_*` containers.
// --------------------------------------------------------------------------
static size_t GetNumProbes(const Container& c,
const typename Container::key_type& key) {
if (!c.bucket_count()) return {};
size_t num_probes = 0;
size_t bucket = c.bucket(key);
for (auto it = c.begin(bucket), e = c.end(bucket);; ++it, ++num_probes) {
if (it == e) return num_probes;
if (c.key_eq()(key, GetKey<Container>(*it, 0))) return num_probes;
}
}
};
} // namespace hashtable_debug_internal
// ----------------------------------------------------------------------------
// I N F O Z S T U B S
// ----------------------------------------------------------------------------
struct HashtablezInfo
{
void PrepareForSampling() {}
};
inline void RecordRehashSlow(HashtablezInfo*, size_t ) {}
static inline void RecordInsertSlow(HashtablezInfo* , size_t, size_t ) {}
static inline void RecordEraseSlow(HashtablezInfo*) {}
static inline HashtablezInfo* SampleSlow(int64_t*) { return nullptr; }
static inline void UnsampleSlow(HashtablezInfo* ) {}
class HashtablezInfoHandle
{
public:
inline void RecordStorageChanged(size_t , size_t ) {}
inline void RecordRehash(size_t ) {}
inline void RecordInsert(size_t , size_t ) {}
inline void RecordErase() {}
friend inline void swap(HashtablezInfoHandle& ,
HashtablezInfoHandle& ) noexcept {}
};
static inline HashtablezInfoHandle Sample() { return HashtablezInfoHandle(); }
class HashtablezSampler
{
public:
// Returns a global Sampler.
static HashtablezSampler& Global() { static HashtablezSampler hzs; return hzs; }
HashtablezInfo* Register() { static HashtablezInfo info; return &info; }
void Unregister(HashtablezInfo* ) {}
using DisposeCallback = void (*)(const HashtablezInfo&);
DisposeCallback SetDisposeCallback(DisposeCallback ) { return nullptr; }
int64_t Iterate(const std::function<void(const HashtablezInfo& stack)>& ) { return 0; }
};
static inline void SetHashtablezEnabled(bool ) {}
static inline void SetHashtablezSampleParameter(int32_t ) {}
static inline void SetHashtablezMaxSamples(int32_t ) {}
namespace memory_internal {
// Constructs T into uninitialized storage pointed by `ptr` using the args
// specified in the tuple.
// ----------------------------------------------------------------------------
template <class Alloc, class T, class Tuple, size_t... I>
void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,
phmap::index_sequence<I...>) {
phmap::allocator_traits<Alloc>::construct(
*alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);
}
template <class T, class F>
struct WithConstructedImplF {
template <class... Args>
decltype(std::declval<F>()(std::declval<T>())) operator()(
Args&&... args) const {
return std::forward<F>(f)(T(std::forward<Args>(args)...));
}
F&& f;
};
template <class T, class Tuple, size_t... Is, class F>
decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(
Tuple&& t, phmap::index_sequence<Is...>, F&& f) {
return WithConstructedImplF<T, F>{std::forward<F>(f)}(
std::get<Is>(std::forward<Tuple>(t))...);
}
template <class T, size_t... Is>
auto TupleRefImpl(T&& t, phmap::index_sequence<Is...>)
-> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {
return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);
}
// Returns a tuple of references to the elements of the input tuple. T must be a
// tuple.
// ----------------------------------------------------------------------------
template <class T>
auto TupleRef(T&& t) -> decltype(
TupleRefImpl(std::forward<T>(t),
phmap::make_index_sequence<
std::tuple_size<typename std::decay<T>::type>::value>())) {
return TupleRefImpl(
std::forward<T>(t),
phmap::make_index_sequence<
std::tuple_size<typename std::decay<T>::type>::value>());
}
template <class F, class K, class V>
decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,
std::declval<std::tuple<K>>(), std::declval<V>()))
DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {
const auto& key = std::get<0>(p.first);
return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
std::move(p.second));
}
} // namespace memory_internal
// ----------------------------------------------------------------------------
// R A W _ H A S H _ S E T
// ----------------------------------------------------------------------------
// An open-addressing
// hashtable with quadratic probing.
//
// This is a low level hashtable on top of which different interfaces can be
// implemented, like flat_hash_set, node_hash_set, string_hash_set, etc.
//
// The table interface is similar to that of std::unordered_set. Notable
// differences are that most member functions support heterogeneous keys when
// BOTH the hash and eq functions are marked as transparent. They do so by
// providing a typedef called `is_transparent`.
//
// When heterogeneous lookup is enabled, functions that take key_type act as if
// they have an overload set like:
//
// iterator find(const key_type& key);
// template <class K>
// iterator find(const K& key);
//
// size_type erase(const key_type& key);
// template <class K>
// size_type erase(const K& key);
//
// std::pair<iterator, iterator> equal_range(const key_type& key);
// template <class K>
// std::pair<iterator, iterator> equal_range(const K& key);
//
// When heterogeneous lookup is disabled, only the explicit `key_type` overloads
// exist.
//
// find() also supports passing the hash explicitly:
//
// iterator find(const key_type& key, size_t hash);
// template <class U>
// iterator find(const U& key, size_t hash);
//
// In addition the pointer to element and iterator stability guarantees are
// weaker: all iterators and pointers are invalidated after a new element is
// inserted.
//
// IMPLEMENTATION DETAILS
//
// The table stores elements inline in a slot array. In addition to the slot
// array the table maintains some control state per slot. The extra state is one
// byte per slot and stores empty or deleted marks, or alternatively 7 bits from
// the hash of an occupied slot. The table is split into logical groups of
// slots, like so:
//
// Group 1 Group 2 Group 3
// +---------------+---------------+---------------+
// | | | | | | | | | | | | | | | | | | | | | | | | |
// +---------------+---------------+---------------+
//
// On lookup the hash is split into two parts:
// - H2: 7 bits (those stored in the control bytes)
// - H1: the rest of the bits
// The groups are probed using H1. For each group the slots are matched to H2 in
// parallel. Because H2 is 7 bits (128 states) and the number of slots per group
// is low (8 or 16) in almost all cases a match in H2 is also a lookup hit.
//
// On insert, once the right group is found (as in lookup), its slots are
// filled in order.
//
// On erase a slot is cleared. In case the group did not have any empty slots
// before the erase, the erased slot is marked as deleted.
//
// Groups without empty slots (but maybe with deleted slots) extend the probe
// sequence. The probing algorithm is quadratic. Given N the number of groups,
// the probing function for the i'th probe is:
//
// P(0) = H1 % N
//
// P(i) = (P(i - 1) + i) % N
//
// This probing function guarantees that after N probes, all the groups of the
// table will be probed exactly once.
// ----------------------------------------------------------------------------
template <class Policy, class Hash, class Eq, class Alloc>
class raw_hash_set
{
using PolicyTraits = hash_policy_traits<Policy>;
using KeyArgImpl =
KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
public:
using init_type = typename PolicyTraits::init_type;
using key_type = typename PolicyTraits::key_type;
// TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user
// code fixes!
using slot_type = typename PolicyTraits::slot_type;
using allocator_type = Alloc;
using size_type = size_t;
using difference_type = ptrdiff_t;
using hasher = Hash;
using key_equal = Eq;
using policy_type = Policy;
using value_type = typename PolicyTraits::value_type;
using reference = value_type&;
using const_reference = const value_type&;
using pointer = typename phmap::allocator_traits<
allocator_type>::template rebind_traits<value_type>::pointer;
using const_pointer = typename phmap::allocator_traits<
allocator_type>::template rebind_traits<value_type>::const_pointer;
// Alias used for heterogeneous lookup functions.
// `key_arg<K>` evaluates to `K` when the functors are transparent and to
// `key_type` otherwise. It permits template argument deduction on `K` for the
// transparent case.
template <class K>
using key_arg = typename KeyArgImpl::template type<K, key_type>;
private:
// Give an early error when key_type is not hashable/eq.
auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
using Layout = phmap::priv::Layout<ctrl_t, slot_type>;
static Layout MakeLayout(size_t capacity) {
assert(IsValidCapacity(capacity));
return Layout(capacity + Group::kWidth + 1, capacity);
}
using AllocTraits = phmap::allocator_traits<allocator_type>;
using SlotAlloc = typename phmap::allocator_traits<
allocator_type>::template rebind_alloc<slot_type>;
using SlotAllocTraits = typename phmap::allocator_traits<
allocator_type>::template rebind_traits<slot_type>;
static_assert(std::is_lvalue_reference<reference>::value,
"Policy::element() must return a reference");
template <typename T>
struct SameAsElementReference
: std::is_same<typename std::remove_cv<
typename std::remove_reference<reference>::type>::type,
typename std::remove_cv<
typename std::remove_reference<T>::type>::type> {};
// An enabler for insert(T&&): T must be convertible to init_type or be the
// same as [cv] value_type [ref].
// Note: we separate SameAsElementReference into its own type to avoid using
// reference unless we need to. MSVC doesn't seem to like it in some
// cases.
template <class T>
using RequiresInsertable = typename std::enable_if<
phmap::disjunction<std::is_convertible<T, init_type>,
SameAsElementReference<T>>::value,
int>::type;
// RequiresNotInit is a workaround for gcc prior to 7.1.
// See https://godbolt.org/g/Y4xsUh.
template <class T>
using RequiresNotInit =
typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;
template <class... Ts>
using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;
public:
static_assert(std::is_same<pointer, value_type*>::value,
"Allocators with custom pointer types are not supported");
static_assert(std::is_same<const_pointer, const value_type*>::value,
"Allocators with custom pointer types are not supported");
class iterator
{
friend class raw_hash_set;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = typename raw_hash_set::value_type;
using reference =
phmap::conditional_t<PolicyTraits::constant_iterators::value,
const value_type&, value_type&>;
using pointer = phmap::remove_reference_t<reference>*;
using difference_type = typename raw_hash_set::difference_type;
iterator() {}
// PRECONDITION: not an end() iterator.
reference operator*() const { return PolicyTraits::element(slot_); }
// PRECONDITION: not an end() iterator.
pointer operator->() const { return &operator*(); }
// PRECONDITION: not an end() iterator.
iterator& operator++() {
++ctrl_;
++slot_;
skip_empty_or_deleted();
return *this;
}
// PRECONDITION: not an end() iterator.
iterator operator++(int) {
auto tmp = *this;
++*this;
return tmp;
}
#if 0 // PHMAP_BIDIRECTIONAL
// PRECONDITION: not a begin() iterator.
iterator& operator--() {
assert(ctrl_);
do {
--ctrl_;
--slot_;
} while (IsEmptyOrDeleted(*ctrl_));
return *this;
}
// PRECONDITION: not a begin() iterator.
iterator operator--(int) {
auto tmp = *this;
--*this;
return tmp;
}
#endif
friend bool operator==(const iterator& a, const iterator& b) {
return a.ctrl_ == b.ctrl_;
}
friend bool operator!=(const iterator& a, const iterator& b) {
return !(a == b);
}
private:
iterator(ctrl_t* ctrl) : ctrl_(ctrl) {} // for end()
iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) {}
void skip_empty_or_deleted() {
while (IsEmptyOrDeleted(*ctrl_)) {
// ctrl is not necessarily aligned to Group::kWidth. It is also likely
// to read past the space for ctrl bytes and into slots. This is ok
// because ctrl has sizeof() == 1 and slot has sizeof() >= 1 so there
// is no way to read outside the combined slot array.
uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted();
ctrl_ += shift;
slot_ += shift;
}
}
ctrl_t* ctrl_ = nullptr;
// To avoid uninitialized member warnings, put slot_ in an anonymous union.
// The member is not initialized on singleton and end iterators.
union {
slot_type* slot_;
};
};
class const_iterator
{
friend class raw_hash_set;
public:
using iterator_category = typename iterator::iterator_category;
using value_type = typename raw_hash_set::value_type;
using reference = typename raw_hash_set::const_reference;
using pointer = typename raw_hash_set::const_pointer;
using difference_type = typename raw_hash_set::difference_type;
const_iterator() {}
// Implicit construction from iterator.
const_iterator(iterator i) : inner_(std::move(i)) {}
reference operator*() const { return *inner_; }
pointer operator->() const { return inner_.operator->(); }
const_iterator& operator++() {
++inner_;
return *this;
}
const_iterator operator++(int) { return inner_++; }
friend bool operator==(const const_iterator& a, const const_iterator& b) {
return a.inner_ == b.inner_;
}
friend bool operator!=(const const_iterator& a, const const_iterator& b) {
return !(a == b);
}
private:
const_iterator(const ctrl_t* ctrl, const slot_type* slot)
: inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot)) {}
iterator inner_;
};
using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>;
using insert_return_type = InsertReturnType<iterator, node_type>;
raw_hash_set() noexcept(
std::is_nothrow_default_constructible<hasher>::value&&
std::is_nothrow_default_constructible<key_equal>::value&&
std::is_nothrow_default_constructible<allocator_type>::value) {}
explicit raw_hash_set(size_t bucket_cnt, const hasher& hashfn = hasher(),
const key_equal& eq = key_equal(),
const allocator_type& alloc = allocator_type())
: ctrl_(EmptyGroup()), settings_(0, hashfn, eq, alloc) {
if (bucket_cnt) {
size_t new_capacity = NormalizeCapacity(bucket_cnt);
reset_growth_left(new_capacity);
initialize_slots(new_capacity);
capacity_ = new_capacity;
}
}
raw_hash_set(size_t bucket_cnt, const hasher& hashfn,
const allocator_type& alloc)
: raw_hash_set(bucket_cnt, hashfn, key_equal(), alloc) {}
raw_hash_set(size_t bucket_cnt, const allocator_type& alloc)
: raw_hash_set(bucket_cnt, hasher(), key_equal(), alloc) {}
explicit raw_hash_set(const allocator_type& alloc)
: raw_hash_set(0, hasher(), key_equal(), alloc) {}
template <class InputIter>
raw_hash_set(InputIter first, InputIter last, size_t bucket_cnt = 0,
const hasher& hashfn = hasher(), const key_equal& eq = key_equal(),
const allocator_type& alloc = allocator_type())
: raw_hash_set(bucket_cnt, hashfn, eq, alloc) {
insert(first, last);
}
template <class InputIter>
raw_hash_set(InputIter first, InputIter last, size_t bucket_cnt,
const hasher& hashfn, const allocator_type& alloc)
: raw_hash_set(first, last, bucket_cnt, hashfn, key_equal(), alloc) {}
template <class InputIter>
raw_hash_set(InputIter first, InputIter last, size_t bucket_cnt,
const allocator_type& alloc)
: raw_hash_set(first, last, bucket_cnt, hasher(), key_equal(), alloc) {}
template <class InputIter>
raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
: raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}
// Instead of accepting std::initializer_list<value_type> as the first
// argument like std::unordered_set<value_type> does, we have two overloads
// that accept std::initializer_list<T> and std::initializer_list<init_type>.
// This is advantageous for performance.
//
// // Turns {"abc", "def"} into std::initializer_list<std::string>, then
// // copies the strings into the set.
// std::unordered_set<std::string> s = {"abc", "def"};
//
// // Turns {"abc", "def"} into std::initializer_list<const char*>, then
// // copies the strings into the set.
// phmap::flat_hash_set<std::string> s = {"abc", "def"};
//
// The same trick is used in insert().
//
// The enabler is necessary to prevent this constructor from triggering where
// the copy constructor is meant to be called.
//
// phmap::flat_hash_set<int> a, b{a};
//
// RequiresNotInit<T> is a workaround for gcc prior to 7.1.
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
raw_hash_set(std::initializer_list<T> init, size_t bucket_cnt = 0,
const hasher& hashfn = hasher(), const key_equal& eq = key_equal(),
const allocator_type& alloc = allocator_type())
: raw_hash_set(init.begin(), init.end(), bucket_cnt, hashfn, eq, alloc) {}
raw_hash_set(std::initializer_list<init_type> init, size_t bucket_cnt = 0,
const hasher& hashfn = hasher(), const key_equal& eq = key_equal(),
const allocator_type& alloc = allocator_type())
: raw_hash_set(init.begin(), init.end(), bucket_cnt, hashfn, eq, alloc) {}
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
raw_hash_set(std::initializer_list<T> init, size_t bucket_cnt,
const hasher& hashfn, const allocator_type& alloc)
: raw_hash_set(init, bucket_cnt, hashfn, key_equal(), alloc) {}
raw_hash_set(std::initializer_list<init_type> init, size_t bucket_cnt,
const hasher& hashfn, const allocator_type& alloc)
: raw_hash_set(init, bucket_cnt, hashfn, key_equal(), alloc) {}
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
raw_hash_set(std::initializer_list<T> init, size_t bucket_cnt,
const allocator_type& alloc)
: raw_hash_set(init, bucket_cnt, hasher(), key_equal(), alloc) {}
raw_hash_set(std::initializer_list<init_type> init, size_t bucket_cnt,
const allocator_type& alloc)
: raw_hash_set(init, bucket_cnt, hasher(), key_equal(), alloc) {}
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
: raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
raw_hash_set(std::initializer_list<init_type> init,
const allocator_type& alloc)
: raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
raw_hash_set(const raw_hash_set& that)
: raw_hash_set(that, AllocTraits::select_on_container_copy_construction(
that.alloc_ref())) {}
raw_hash_set(const raw_hash_set& that, const allocator_type& a)
: raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) {
rehash(that.capacity()); // operator=() should preserve load_factor
// Because the table is guaranteed to be empty, we can do something faster
// than a full `insert`.
for (const auto& v : that) {
const size_t hashval = PolicyTraits::apply(HashElement{hash_ref()}, v);
auto target = find_first_non_full(hashval);
set_ctrl(target.offset, H2(hashval));
emplace_at(target.offset, v);
infoz_.RecordInsert(hashval, target.probe_length);
}
size_ = that.size();
growth_left() -= that.size();
}
raw_hash_set(raw_hash_set&& that) noexcept(
std::is_nothrow_copy_constructible<hasher>::value&&
std::is_nothrow_copy_constructible<key_equal>::value&&
std::is_nothrow_copy_constructible<allocator_type>::value)
: ctrl_(phmap::exchange(that.ctrl_, EmptyGroup())),
slots_(phmap::exchange(that.slots_, nullptr)),
size_(phmap::exchange(that.size_, 0)),
capacity_(phmap::exchange(that.capacity_, 0)),
infoz_(phmap::exchange(that.infoz_, HashtablezInfoHandle())),
// Hash, equality and allocator are copied instead of moved because
// `that` must be left valid. If Hash is std::function<Key>, moving it
// would create a nullptr functor that cannot be called.
settings_(std::move(that.settings_)) {
// growth_left was copied above, reset the one from `that`.
that.growth_left() = 0;
}
raw_hash_set(raw_hash_set&& that, const allocator_type& a)
: ctrl_(EmptyGroup()),
slots_(nullptr),
size_(0),
capacity_(0),
settings_(0, that.hash_ref(), that.eq_ref(), a) {
if (a == that.alloc_ref()) {
std::swap(ctrl_, that.ctrl_);
std::swap(slots_, that.slots_);
std::swap(size_, that.size_);
std::swap(capacity_, that.capacity_);
std::swap(growth_left(), that.growth_left());
std::swap(infoz_, that.infoz_);
} else {
reserve(that.size());
// Note: this will copy elements of dense_set and unordered_set instead of
// moving them. This can be fixed if it ever becomes an issue.
for (auto& elem : that) insert(std::move(elem));
}
}
raw_hash_set& operator=(const raw_hash_set& that) {
raw_hash_set tmp(that,
AllocTraits::propagate_on_container_copy_assignment::value
? that.alloc_ref()
: alloc_ref());
swap(tmp);
return *this;
}
raw_hash_set& operator=(raw_hash_set&& that) noexcept(
phmap::allocator_traits<allocator_type>::is_always_equal::value&&
std::is_nothrow_move_assignable<hasher>::value&&
std::is_nothrow_move_assignable<key_equal>::value) {
// TODO(sbenza): We should only use the operations from the noexcept clause
// to make sure we actually adhere to that contract.
return move_assign(
std::move(that),
typename AllocTraits::propagate_on_container_move_assignment());
}
~raw_hash_set() { destroy_slots(); }
iterator begin() {
auto it = iterator_at(0);
it.skip_empty_or_deleted();
return it;
}
iterator end()
{
#if 0 // PHMAP_BIDIRECTIONAL
return iterator_at(capacity_);
#else
return {ctrl_ + capacity_};
#endif
}
const_iterator begin() const {
return const_cast<raw_hash_set*>(this)->begin();
}
const_iterator end() const { return const_cast<raw_hash_set*>(this)->end(); }
const_iterator cbegin() const { return begin(); }
const_iterator cend() const { return end(); }
bool empty() const { return !size(); }
size_t size() const { return size_; }
size_t capacity() const { return capacity_; }
size_t max_size() const { return (std::numeric_limits<size_t>::max)(); }
PHMAP_ATTRIBUTE_REINITIALIZES void clear() {
if (empty())
return;
if (capacity_) {
PHMAP_IF_CONSTEXPR((!std::is_trivially_destructible<typename PolicyTraits::value_type>::value ||
std::is_same<typename Policy::is_flat, std::false_type>::value)) {
// node map or not trivially destructible... we need to iterate and destroy values one by one
for (size_t i = 0; i != capacity_; ++i) {
if (IsFull(ctrl_[i])) {
PolicyTraits::destroy(&alloc_ref(), slots_ + i);
}
}
}
size_ = 0;
reset_ctrl(capacity_);
reset_growth_left(capacity_);
}
assert(empty());
infoz_.RecordStorageChanged(0, capacity_);
}
// This overload kicks in when the argument is an rvalue of insertable and
// decomposable type other than init_type.
//
// flat_hash_map<std::string, int> m;
// m.insert(std::make_pair("abc", 42));
template <class T, RequiresInsertable<T> = 0,
typename std::enable_if<IsDecomposable<T>::value, int>::type = 0,
T* = nullptr>
std::pair<iterator, bool> insert(T&& value) {
return emplace(std::forward<T>(value));
}
// This overload kicks in when the argument is a bitfield or an lvalue of
// insertable and decomposable type.
//
// union { int n : 1; };
// flat_hash_set<int> s;
// s.insert(n);
//
// flat_hash_set<std::string> s;
// const char* p = "hello";
// s.insert(p);
//
// TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
// RequiresInsertable<T> with RequiresInsertable<const T&>.
// We are hitting this bug: https://godbolt.org/g/1Vht4f.
template <class T, RequiresInsertable<T> = 0,
typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
std::pair<iterator, bool> insert(const T& value) {
return emplace(value);
}
// This overload kicks in when the argument is an rvalue of init_type. Its
// purpose is to handle brace-init-list arguments.
//
// flat_hash_set<std::string, int> s;
// s.insert({"abc", 42});
std::pair<iterator, bool> insert(init_type&& value) {
return emplace(std::move(value));
}
template <class T, RequiresInsertable<T> = 0,
typename std::enable_if<IsDecomposable<T>::value, int>::type = 0,
T* = nullptr>
iterator insert(const_iterator, T&& value) {
return insert(std::forward<T>(value)).first;
}
// TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
// RequiresInsertable<T> with RequiresInsertable<const T&>.
// We are hitting this bug: https://godbolt.org/g/1Vht4f.
template <class T, RequiresInsertable<T> = 0,
typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
iterator insert(const_iterator, const T& value) {
return insert(value).first;
}
iterator insert(const_iterator, init_type&& value) {
return insert(std::move(value)).first;
}
template <typename It>
using IsRandomAccess = std::is_same<typename std::iterator_traits<It>::iterator_category,
std::random_access_iterator_tag>;
template<typename T>
struct has_difference_operator
{
private:
using yes = std::true_type;
using no = std::false_type;
template<typename U> static auto test(int) -> decltype(std::declval<U>() - std::declval<U>() == 1, yes());
template<typename> static no test(...);
public:
static constexpr bool value = std::is_same<decltype(test<T>(0)), yes>::value;
};
template <class InputIt, typename phmap::enable_if_t<has_difference_operator<InputIt>::value, int> = 0>
void insert(InputIt first, InputIt last) {
this->reserve(this->size() + (last - first));
for (; first != last; ++first)
emplace(*first);
}
template <class InputIt, typename phmap::enable_if_t<!has_difference_operator<InputIt>::value, int> = 0>
void insert(InputIt first, InputIt last) {
for (; first != last; ++first)
emplace(*first);
}
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0>
void insert(std::initializer_list<T> ilist) {
insert(ilist.begin(), ilist.end());
}
void insert(std::initializer_list<init_type> ilist) {
insert(ilist.begin(), ilist.end());
}
insert_return_type insert(node_type&& node) {
if (!node) return {end(), false, node_type()};
const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node));
auto res = PolicyTraits::apply(
InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))},
elem);
if (res.second) {
CommonAccess::Reset(&node);
return {res.first, true, node_type()};
} else {
return {res.first, false, std::move(node)};
}
}
insert_return_type insert(node_type&& node, size_t hashval) {
if (!node) return {end(), false, node_type()};
const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node));
auto res = PolicyTraits::apply(
InsertSlotWithHash<false>{*this, std::move(*CommonAccess::GetSlot(node)), hashval},
elem);
if (res.second) {
CommonAccess::Reset(&node);
return {res.first, true, node_type()};
} else {
return {res.first, false, std::move(node)};
}
}
iterator insert(const_iterator, node_type&& node) {
auto res = insert(std::move(node));
node = std::move(res.node);
return res.position;
}
// This overload kicks in if we can deduce the key from args. This enables us
// to avoid constructing value_type if an entry with the same key already
// exists.
//
// For example:
//
// flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
// // Creates no std::string copies and makes no heap allocations.
// m.emplace("abc", "xyz");
template <class... Args, typename std::enable_if<
IsDecomposable<Args...>::value, int>::type = 0>
std::pair<iterator, bool> emplace(Args&&... args) {
return PolicyTraits::apply(EmplaceDecomposable{*this},
std::forward<Args>(args)...);
}
template <class... Args, typename std::enable_if<IsDecomposable<Args...>::value, int>::type = 0>
std::pair<iterator, bool> emplace_with_hash(size_t hashval, Args&&... args) {
return PolicyTraits::apply(EmplaceDecomposableHashval{*this, hashval}, std::forward<Args>(args)...);
}
// This overload kicks in if we cannot deduce the key from args. It constructs
// value_type unconditionally and then either moves it into the table or
// destroys.
template <class... Args, typename std::enable_if<!IsDecomposable<Args...>::value, int>::type = 0>
std::pair<iterator, bool> emplace(Args&&... args) {
typename phmap::aligned_storage<sizeof(slot_type), alignof(slot_type)>::type
raw;
slot_type* slot = reinterpret_cast<slot_type*>(&raw);
PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
const auto& elem = PolicyTraits::element(slot);
return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem);
}
template <class... Args, typename std::enable_if<!IsDecomposable<Args...>::value, int>::type = 0>
std::pair<iterator, bool> emplace_with_hash(size_t hashval, Args&&... args) {
typename phmap::aligned_storage<sizeof(slot_type), alignof(slot_type)>::type raw;
slot_type* slot = reinterpret_cast<slot_type*>(&raw);
PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
const auto& elem = PolicyTraits::element(slot);
return PolicyTraits::apply(InsertSlotWithHash<true>{*this, std::move(*slot), hashval}, elem);
}
template <class... Args>
iterator emplace_hint(const_iterator, Args&&... args) {
return emplace(std::forward<Args>(args)...).first;
}
template <class... Args>
iterator emplace_hint_with_hash(size_t hashval, const_iterator, Args&&... args) {
return emplace_with_hash(hashval, std::forward<Args>(args)...).first;
}
// Extension API: support for lazy emplace.
//
// Looks up key in the table. If found, returns the iterator to the element.
// Otherwise calls f with one argument of type raw_hash_set::constructor. f
// MUST call raw_hash_set::constructor with arguments as if a
// raw_hash_set::value_type is constructed, otherwise the behavior is
// undefined.
//
// For example:
//
// std::unordered_set<ArenaString> s;
// // Makes ArenaStr even if "abc" is in the map.
// s.insert(ArenaString(&arena, "abc"));
//
// flat_hash_set<ArenaStr> s;
// // Makes ArenaStr only if "abc" is not in the map.
// s.lazy_emplace("abc", [&](const constructor& ctor) {
// ctor(&arena, "abc");
// });
//
// WARNING: This API is currently experimental. If there is a way to implement
// the same thing with the rest of the API, prefer that.
class constructor
{
friend class raw_hash_set;
public:
slot_type* slot() const {
return *slot_;
}
template <class... Args>
void operator()(Args&&... args) const {
assert(*slot_);
PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...);
*slot_ = nullptr;
}
private:
constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {}
allocator_type* alloc_;
slot_type** slot_;
};
// Extension API: support for lazy emplace.
// Looks up key in the table. If found, returns the iterator to the element.
// Otherwise calls f with one argument of type raw_hash_set::constructor. f
// MUST call raw_hash_set::constructor with arguments as if a
// raw_hash_set::value_type is constructed, otherwise the behavior is
// undefined.
//
// For example:
//
// std::unordered_set<ArenaString> s;
// // Makes ArenaStr even if "abc" is in the map.
// s.insert(ArenaString(&arena, "abc"));
//
// flat_hash_set<ArenaStr> s;
// // Makes ArenaStr only if "abc" is not in the map.
// s.lazy_emplace("abc", [&](const constructor& ctor) {
// ctor(&arena, "abc");
// });
// -----------------------------------------------------
template <class K = key_type, class F>
iterator lazy_emplace(const key_arg<K>& key, F&& f) {
return lazy_emplace_with_hash(key, this->hash(key), std::forward<F>(f));
}
template <class K = key_type, class F>
iterator lazy_emplace_with_hash(const key_arg<K>& key, size_t hashval, F&& f) {
size_t offset = _find_key(key, hashval);
if (offset == (size_t)-1) {
offset = prepare_insert(hashval);
lazy_emplace_at(offset, std::forward<F>(f));
this->set_ctrl(offset, H2(hashval));
}
return iterator_at(offset);
}
template <class K = key_type, class F>
void lazy_emplace_at(size_t& idx, F&& f) {
slot_type* slot = slots_ + idx;
std::forward<F>(f)(constructor(&alloc_ref(), &slot));
assert(!slot);
}
template <class K = key_type, class F>
void emplace_single_with_hash(const key_arg<K>& key, size_t hashval, F&& f) {
size_t offset = _find_key(key, hashval);
if (offset == (size_t)-1) {
offset = prepare_insert(hashval);
lazy_emplace_at(offset, std::forward<F>(f));
this->set_ctrl(offset, H2(hashval));
} else
_erase(iterator_at(offset));
}
// Extension API: support for heterogeneous keys.
//
// std::unordered_set<std::string> s;
// // Turns "abc" into std::string.
// s.erase("abc");
//
// flat_hash_set<std::string> s;
// // Uses "abc" directly without copying it into std::string.
// s.erase("abc");
template <class K = key_type>
size_type erase(const key_arg<K>& key) {
auto it = find(key);
if (it == end()) return 0;
_erase(it);
return 1;
}
iterator erase(const_iterator cit) { return erase(cit.inner_); }
// Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`,
// this method returns void to reduce algorithmic complexity to O(1). In
// order to erase while iterating across a map, use the following idiom (which
// also works for standard containers):
//
// for (auto it = m.begin(), end = m.end(); it != end;) {
// if (<pred>) {
// m._erase(it++);
// } else {
// ++it;
// }
// }
void _erase(iterator it) {
assert(it != end());
PolicyTraits::destroy(&alloc_ref(), it.slot_);
erase_meta_only(it);
}
void _erase(const_iterator cit) { _erase(cit.inner_); }
// This overload is necessary because otherwise erase<K>(const K&) would be
// a better match if non-const iterator is passed as an argument.
iterator erase(iterator it) {
auto res = it;
++res;
_erase(it);
return res;
}
iterator erase(const_iterator first, const_iterator last) {
while (first != last) {
_erase(first++);
}
return last.inner_;
}
// Moves elements from `src` into `this`.
// If the element already exists in `this`, it is left unmodified in `src`.
template <typename H, typename E>
void merge(raw_hash_set<Policy, H, E, Alloc>& src) { // NOLINT
assert(this != &src);
for (auto it = src.begin(), e = src.end(); it != e; ++it) {
if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)},
PolicyTraits::element(it.slot_))
.second) {
src.erase_meta_only(it);
}
}
}
template <typename H, typename E>
void merge(raw_hash_set<Policy, H, E, Alloc>&& src) {
merge(src);
}
node_type extract(const_iterator position) {
auto node =
CommonAccess::Make<node_type>(alloc_ref(), position.inner_.slot_);
erase_meta_only(position);
return node;
}
template <
class K = key_type,
typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0>
node_type extract(const key_arg<K>& key) {
auto it = find(key);
return it == end() ? node_type() : extract(const_iterator{it});
}
void swap(raw_hash_set& that) noexcept(
IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() &&
(!AllocTraits::propagate_on_container_swap::value ||
IsNoThrowSwappable<allocator_type>(typename AllocTraits::propagate_on_container_swap{}))) {
using std::swap;
swap(ctrl_, that.ctrl_);
swap(slots_, that.slots_);
swap(size_, that.size_);
swap(capacity_, that.capacity_);
swap(growth_left(), that.growth_left());
swap(hash_ref(), that.hash_ref());
swap(eq_ref(), that.eq_ref());
swap(infoz_, that.infoz_);
SwapAlloc(alloc_ref(), that.alloc_ref(), typename AllocTraits::propagate_on_container_swap{});
}
#if !defined(PHMAP_NON_DETERMINISTIC)
template<typename OutputArchive>
bool phmap_dump(OutputArchive&) const;
template<typename InputArchive>
bool phmap_load(InputArchive&);
#endif
void rehash(size_t n) {
if (n == 0 && capacity_ == 0) return;
if (n == 0 && size_ == 0) {
destroy_slots();
infoz_.RecordStorageChanged(0, 0);
return;
}
// bitor is a faster way of doing `max` here. We will round up to the next
// power-of-2-minus-1, so bitor is good enough.
auto m = NormalizeCapacity((std::max)(n, size()));
// n == 0 unconditionally rehashes as per the standard.
if (n == 0 || m > capacity_) {
resize(m);
}
}
void reserve(size_t n) { rehash(GrowthToLowerboundCapacity(n)); }
// Extension API: support for heterogeneous keys.
//
// std::unordered_set<std::string> s;
// // Turns "abc" into std::string.
// s.count("abc");
//
// ch_set<std::string> s;
// // Uses "abc" directly without copying it into std::string.
// s.count("abc");
template <class K = key_type>
size_t count(const key_arg<K>& key) const {
return find(key) == end() ? size_t(0) : size_t(1);
}
// Issues CPU prefetch instructions for the memory needed to find or insert
// a key. Like all lookup functions, this support heterogeneous keys.
//
// NOTE: This is a very low level operation and should not be used without
// specific benchmarks indicating its importance.
void prefetch_hash(size_t hashval) const {
(void)hashval;
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))
auto seq = probe(hashval);
_mm_prefetch((const char *)(ctrl_ + seq.offset()), _MM_HINT_NTA);
_mm_prefetch((const char *)(slots_ + seq.offset()), _MM_HINT_NTA);
#elif defined(__GNUC__)
auto seq = probe(hashval);
__builtin_prefetch(static_cast<const void*>(ctrl_ + seq.offset()));
__builtin_prefetch(static_cast<const void*>(slots_ + seq.offset()));
#endif // __GNUC__
}
template <class K = key_type>
void prefetch(const key_arg<K>& key) const {
prefetch_hash(this->hash(key));
}
// The API of find() has two extensions.
//
// 1. The hash can be passed by the user. It must be equal to the hash of the
// key.
//
// 2. The type of the key argument doesn't have to be key_type. This is so
// called heterogeneous key support.
template <class K = key_type>
iterator find(const key_arg<K>& key, size_t hashval) {
size_t offset;
if (find_impl(key, hashval, offset))
return iterator_at(offset);
else
return end();
}
template <class K = key_type>
pointer find_ptr(const key_arg<K>& key, size_t hashval) {
size_t offset;
if (find_impl(key, hashval, offset))
return &PolicyTraits::element(slots_ + offset);
else
return nullptr;
}
template <class K = key_type>
iterator find(const key_arg<K>& key) {
return find(key, this->hash(key));
}
template <class K = key_type>
const_iterator find(const key_arg<K>& key, size_t hashval) const {
return const_cast<raw_hash_set*>(this)->find(key, hashval);
}
template <class K = key_type>
const_iterator find(const key_arg<K>& key) const {
return find(key, this->hash(key));
}
template <class K = key_type>
bool contains(const key_arg<K>& key) const {
return find(key) != end();
}
template <class K = key_type>
bool contains(const key_arg<K>& key, size_t hashval) const {
return find(key, hashval) != end();
}
template <class K = key_type>
std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
auto it = find(key);
if (it != end()) return {it, std::next(it)};
return {it, it};
}
template <class K = key_type>
std::pair<const_iterator, const_iterator> equal_range(
const key_arg<K>& key) const {
auto it = find(key);
if (it != end()) return {it, std::next(it)};
return {it, it};
}
size_t bucket_count() const { return capacity_; }
float load_factor() const {
return capacity_ ? static_cast<float>(static_cast<double>(size()) / capacity_) : 0.0f;
}
float max_load_factor() const { return 1.0f; }
void max_load_factor(float) {
// Does nothing.
}
hasher hash_function() const { return hash_ref(); } // warning: doesn't match internal hash - use hash() member function
key_equal key_eq() const { return eq_ref(); }
allocator_type get_allocator() const { return alloc_ref(); }
friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) {
if (a.size() != b.size()) return false;
const raw_hash_set* outer = &a;
const raw_hash_set* inner = &b;
if (outer->capacity() > inner->capacity())
std::swap(outer, inner);
for (const value_type& elem : *outer)
if (!inner->has_element(elem)) return false;
return true;
}
friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) {
return !(a == b);
}
friend void swap(raw_hash_set& a,
raw_hash_set& b) noexcept(noexcept(a.swap(b))) {
a.swap(b);
}
template <class K>
size_t hash(const K& key) const {
return HashElement{hash_ref()}(key);
}
private:
template <class Container, typename Enabler>
friend struct phmap::priv::hashtable_debug_internal::HashtableDebugAccess;
template <class K = key_type>
bool find_impl(const key_arg<K>& key, size_t hashval, size_t& offset) {
auto seq = probe(hashval);
while (true) {
Group g{ ctrl_ + seq.offset() };
for (uint32_t i : g.Match((h2_t)H2(hashval))) {
offset = seq.offset((size_t)i);
if (PHMAP_PREDICT_TRUE(PolicyTraits::apply(
EqualElement<K>{key, eq_ref()},
PolicyTraits::element(slots_ + offset))))
return true;
}
if (PHMAP_PREDICT_TRUE(g.MatchEmpty()))
return false;
seq.next();
}
}
struct FindElement
{
template <class K, class... Args>
const_iterator operator()(const K& key, Args&&...) const {
return s.find(key);
}
const raw_hash_set& s;
};
struct HashElement
{
template <class K, class... Args>
size_t operator()(const K& key, Args&&...) const {
return phmap_mix<sizeof(size_t)>()(h(key));
}
const hasher& h;
};
template <class K1>
struct EqualElement
{
template <class K2, class... Args>
bool operator()(const K2& lhs, Args&&...) const {
return eq(lhs, rhs);
}
const K1& rhs;
const key_equal& eq;
};
template <class K, class... Args>
std::pair<iterator, bool> emplace_decomposable(const K& key, size_t hashval,
Args&&... args)
{
size_t offset = _find_key(key, hashval);
if (offset == (size_t)-1) {
offset = prepare_insert(hashval);
emplace_at(offset, std::forward<Args>(args)...);
this->set_ctrl(offset, H2(hashval));
return {iterator_at(offset), true};
}
return {iterator_at(offset), false};
}
struct EmplaceDecomposable
{
template <class K, class... Args>
std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
return s.emplace_decomposable(key, s.hash(key), std::forward<Args>(args)...);
}
raw_hash_set& s;
};
struct EmplaceDecomposableHashval {
template <class K, class... Args>
std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
return s.emplace_decomposable(key, hashval, std::forward<Args>(args)...);
}
raw_hash_set& s;
size_t hashval;
};
template <bool do_destroy>
struct InsertSlot
{
template <class K, class... Args>
std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
size_t hashval = s.hash(key);
auto res = s.find_or_prepare_insert(key, hashval);
if (res.second) {
PolicyTraits::transfer(&s.alloc_ref(), s.slots_ + res.first, &slot);
s.set_ctrl(res.first, H2(hashval));
} else if (do_destroy) {
PolicyTraits::destroy(&s.alloc_ref(), &slot);
}
return {s.iterator_at(res.first), res.second};
}
raw_hash_set& s;
// Constructed slot. Either moved into place or destroyed.
slot_type&& slot;
};
template <bool do_destroy>
struct InsertSlotWithHash
{
template <class K, class... Args>
std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
auto res = s.find_or_prepare_insert(key, hashval);
if (res.second) {
PolicyTraits::transfer(&s.alloc_ref(), s.slots_ + res.first, &slot);
s.set_ctrl(res.first, H2(hashval));
} else if (do_destroy) {
PolicyTraits::destroy(&s.alloc_ref(), &slot);
}
return {s.iterator_at(res.first), res.second};
}
raw_hash_set& s;
// Constructed slot. Either moved into place or destroyed.
slot_type&& slot;
size_t &hashval;
};
// "erases" the object from the container, except that it doesn't actually
// destroy the object. It only updates all the metadata of the class.
// This can be used in conjunction with Policy::transfer to move the object to
// another place.
void erase_meta_only(const_iterator it) {
assert(IsFull(*it.inner_.ctrl_) && "erasing a dangling iterator");
--size_;
const size_t index = (size_t)(it.inner_.ctrl_ - ctrl_);
const size_t index_before = (index - Group::kWidth) & capacity_;
const auto empty_after = Group(it.inner_.ctrl_).MatchEmpty();
const auto empty_before = Group(ctrl_ + index_before).MatchEmpty();
// We count how many consecutive non empties we have to the right and to the
// left of `it`. If the sum is >= kWidth then there is at least one probe
// window that might have seen a full group.
bool was_never_full =
empty_before && empty_after &&
static_cast<size_t>(empty_after.TrailingZeros() +
empty_before.LeadingZeros()) < Group::kWidth;
set_ctrl(index, was_never_full ? kEmpty : kDeleted);
growth_left() += was_never_full;
infoz_.RecordErase();
}
void initialize_slots(size_t new_capacity) {
assert(new_capacity);
if (std::is_same<SlotAlloc, std::allocator<slot_type>>::value &&
slots_ == nullptr) {
infoz_ = Sample();
}
auto layout = MakeLayout(new_capacity);
char* mem = static_cast<char*>(
Allocate<Layout::Alignment()>(&alloc_ref(), layout.AllocSize()));
ctrl_ = reinterpret_cast<ctrl_t*>(layout.template Pointer<0>(mem));
slots_ = layout.template Pointer<1>(mem);
reset_ctrl(new_capacity);
reset_growth_left(new_capacity);
infoz_.RecordStorageChanged(size_, new_capacity);
}
void destroy_slots() {
if (!capacity_)
return;
PHMAP_IF_CONSTEXPR((!std::is_trivially_destructible<typename PolicyTraits::value_type>::value ||
std::is_same<typename Policy::is_flat, std::false_type>::value)) {
// node map, or not trivially destructible... we need to iterate and destroy values one by one
// std::cout << "either this is a node map or " << type_name<typename PolicyTraits::value_type>() << " is not trivially_destructible\n";
for (size_t i = 0; i != capacity_; ++i) {
if (IsFull(ctrl_[i])) {
PolicyTraits::destroy(&alloc_ref(), slots_ + i);
}
}
}
auto layout = MakeLayout(capacity_);
// Unpoison before returning the memory to the allocator.
SanitizerUnpoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_);
Deallocate<Layout::Alignment()>(&alloc_ref(), ctrl_, layout.AllocSize());
ctrl_ = EmptyGroup();
slots_ = nullptr;
size_ = 0;
capacity_ = 0;
growth_left() = 0;
}
void resize(size_t new_capacity) {
assert(IsValidCapacity(new_capacity));
auto* old_ctrl = ctrl_;
auto* old_slots = slots_;
const size_t old_capacity = capacity_;
initialize_slots(new_capacity);
capacity_ = new_capacity;
for (size_t i = 0; i != old_capacity; ++i) {
if (IsFull(old_ctrl[i])) {
size_t hashval = PolicyTraits::apply(HashElement{hash_ref()},
PolicyTraits::element(old_slots + i));
auto target = find_first_non_full(hashval);
size_t new_i = target.offset;
set_ctrl(new_i, H2(hashval));
PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i);
}
}
if (old_capacity) {
SanitizerUnpoisonMemoryRegion(old_slots,
sizeof(slot_type) * old_capacity);
auto layout = MakeLayout(old_capacity);
Deallocate<Layout::Alignment()>(&alloc_ref(), old_ctrl,
layout.AllocSize());
}
}
void drop_deletes_without_resize() PHMAP_ATTRIBUTE_NOINLINE {
assert(IsValidCapacity(capacity_));
assert(!is_small());
// Algorithm:
// - mark all DELETED slots as EMPTY
// - mark all FULL slots as DELETED
// - for each slot marked as DELETED
// hash = Hash(element)
// target = find_first_non_full(hash)
// if target is in the same group
// mark slot as FULL
// else if target is EMPTY
// transfer element to target
// mark slot as EMPTY
// mark target as FULL
// else if target is DELETED
// swap current element with target element
// mark target as FULL
// repeat procedure for current slot with moved from element (target)
ConvertDeletedToEmptyAndFullToDeleted(ctrl_, capacity_);
typename phmap::aligned_storage<sizeof(slot_type), alignof(slot_type)>::type
raw;
slot_type* slot = reinterpret_cast<slot_type*>(&raw);
for (size_t i = 0; i != capacity_; ++i) {
if (!IsDeleted(ctrl_[i])) continue;
size_t hashval = PolicyTraits::apply(HashElement{hash_ref()},
PolicyTraits::element(slots_ + i));
auto target = find_first_non_full(hashval);
size_t new_i = target.offset;
// Verify if the old and new i fall within the same group wrt the hashval.
// If they do, we don't need to move the object as it falls already in the
// best probe we can.
const auto probe_index = [&](size_t pos) {
return ((pos - probe(hashval).offset()) & capacity_) / Group::kWidth;
};
// Element doesn't move.
if (PHMAP_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) {
set_ctrl(i, H2(hashval));
continue;
}
if (IsEmpty(ctrl_[new_i])) {
// Transfer element to the empty spot.
// set_ctrl poisons/unpoisons the slots so we have to call it at the
// right time.
set_ctrl(new_i, H2(hashval));
PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slots_ + i);
set_ctrl(i, kEmpty);
} else {
assert(IsDeleted(ctrl_[new_i]));
set_ctrl(new_i, H2(hashval));
// Until we are done rehashing, DELETED marks previously FULL slots.
// Swap i and new_i elements.
PolicyTraits::transfer(&alloc_ref(), slot, slots_ + i);
PolicyTraits::transfer(&alloc_ref(), slots_ + i, slots_ + new_i);
PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slot);
--i; // repeat
}
}
reset_growth_left(capacity_);
}
void rehash_and_grow_if_necessary() {
if (capacity_ == 0) {
resize(1);
} else if (size() <= CapacityToGrowth(capacity()) / 2) {
// Squash DELETED without growing if there is enough capacity.
drop_deletes_without_resize();
} else {
// Otherwise grow the container.
resize(capacity_ * 2 + 1);
}
}
bool has_element(const value_type& elem, size_t hashval) const {
auto seq = probe(hashval);
while (true) {
Group g{ctrl_ + seq.offset()};
for (uint32_t i : g.Match((h2_t)H2(hashval))) {
if (PHMAP_PREDICT_TRUE(PolicyTraits::element(slots_ + seq.offset((size_t)i)) ==
elem))
return true;
}
if (PHMAP_PREDICT_TRUE(g.MatchEmpty())) return false;
seq.next();
assert(seq.getindex() < capacity_ && "full table!");
}
return false;
}
bool has_element(const value_type& elem) const {
size_t hashval = PolicyTraits::apply(HashElement{hash_ref()}, elem);
return has_element(elem, hashval);
}
// Probes the raw_hash_set with the probe sequence for hash and returns the
// pointer to the first empty or deleted slot.
// NOTE: this function must work with tables having both kEmpty and kDelete
// in one group. Such tables appears during drop_deletes_without_resize.
//
// This function is very useful when insertions happen and:
// - the input is already a set
// - there are enough slots
// - the element with the hash is not in the table
struct FindInfo
{
size_t offset;
size_t probe_length;
};
FindInfo find_first_non_full(size_t hashval) {
auto seq = probe(hashval);
while (true) {
Group g{ctrl_ + seq.offset()};
auto mask = g.MatchEmptyOrDeleted();
if (mask) {
return {seq.offset((size_t)mask.LowestBitSet()), seq.getindex()};
}
assert(seq.getindex() < capacity_ && "full table!");
seq.next();
}
}
// TODO(alkis): Optimize this assuming *this and that don't overlap.
raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) {
raw_hash_set tmp(std::move(that));
swap(tmp);
return *this;
}
raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) {
raw_hash_set tmp(std::move(that), alloc_ref());
swap(tmp);
return *this;
}
protected:
template <class K>
size_t _find_key(const K& key, size_t hashval) {
auto seq = probe(hashval);
while (true) {
Group g{ctrl_ + seq.offset()};
for (uint32_t i : g.Match((h2_t)H2(hashval))) {
if (PHMAP_PREDICT_TRUE(PolicyTraits::apply(
EqualElement<K>{key, eq_ref()},
PolicyTraits::element(slots_ + seq.offset((size_t)i)))))
return seq.offset((size_t)i);
}
if (PHMAP_PREDICT_TRUE(g.MatchEmpty())) break;
seq.next();
}
return (size_t)-1;
}
template <class K>
std::pair<size_t, bool> find_or_prepare_insert(const K& key, size_t hashval) {
size_t offset = _find_key(key, hashval);
if (offset == (size_t)-1)
return {prepare_insert(hashval), true};
return {offset, false};
}
size_t prepare_insert(size_t hashval) PHMAP_ATTRIBUTE_NOINLINE {
auto target = find_first_non_full(hashval);
if (PHMAP_PREDICT_FALSE(growth_left() == 0 &&
!IsDeleted(ctrl_[target.offset]))) {
rehash_and_grow_if_necessary();
target = find_first_non_full(hashval);
}
++size_;
growth_left() -= IsEmpty(ctrl_[target.offset]);
// set_ctrl(target.offset, H2(hashval));
infoz_.RecordInsert(hashval, target.probe_length);
return target.offset;
}
// Constructs the value in the space pointed by the iterator. This only works
// after an unsuccessful find_or_prepare_insert() and before any other
// modifications happen in the raw_hash_set.
//
// PRECONDITION: i is an index returned from find_or_prepare_insert(k), where
// k is the key decomposed from `forward<Args>(args)...`, and the bool
// returned by find_or_prepare_insert(k) was true.
// POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...).
template <class... Args>
void emplace_at(size_t i, Args&&... args) {
PolicyTraits::construct(&alloc_ref(), slots_ + i,
std::forward<Args>(args)...);
#ifdef PHMAP_CHECK_CONSTRUCTED_VALUE
// this check can be costly, so do it only when requested
assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) ==
iterator_at(i) &&
"constructed value does not match the lookup key");
#endif
}
iterator iterator_at(size_t i) { return {ctrl_ + i, slots_ + i}; }
const_iterator iterator_at(size_t i) const { return {ctrl_ + i, slots_ + i}; }
protected:
// Sets the control byte, and if `i < Group::kWidth`, set the cloned byte at
// the end too.
void set_ctrl(size_t i, ctrl_t h) {
assert(i < capacity_);
if (IsFull(h)) {
SanitizerUnpoisonObject(slots_ + i);
} else {
SanitizerPoisonObject(slots_ + i);
}
ctrl_[i] = h;
ctrl_[((i - Group::kWidth) & capacity_) + 1 +
((Group::kWidth - 1) & capacity_)] = h;
}
private:
friend struct RawHashSetTestOnlyAccess;
probe_seq<Group::kWidth> probe(size_t hashval) const {
return probe_seq<Group::kWidth>(H1(hashval, ctrl_), capacity_);
}
// Reset all ctrl bytes back to kEmpty, except the sentinel.
void reset_ctrl(size_t new_capacity) {
std::memset(ctrl_, kEmpty, new_capacity + Group::kWidth);
ctrl_[new_capacity] = kSentinel;
SanitizerPoisonMemoryRegion(slots_, sizeof(slot_type) * new_capacity);
}
void reset_growth_left(size_t new_capacity) {
growth_left() = CapacityToGrowth(new_capacity) - size_;
}
size_t& growth_left() { return std::get<0>(settings_); }
const size_t& growth_left() const { return std::get<0>(settings_); }
template <size_t N,
template <class, class, class, class> class RefSet,
class M, class P, class H, class E, class A>
friend class parallel_hash_set;
template <size_t N,
template <class, class, class, class> class RefSet,
class M, class P, class H, class E, class A>
friend class parallel_hash_map;
// The representation of the object has two modes:
// - small: For capacities < kWidth-1
// - large: For the rest.
//
// Differences:
// - In small mode we are able to use the whole capacity. The extra control
// bytes give us at least one "empty" control byte to stop the iteration.
// This is important to make 1 a valid capacity.
//
// - In small mode only the first `capacity()` control bytes after the
// sentinel are valid. The rest contain dummy kEmpty values that do not
// represent a real slot. This is important to take into account on
// find_first_non_full(), where we never try ShouldInsertBackwards() for
// small tables.
bool is_small() const { return capacity_ < Group::kWidth - 1; }
hasher& hash_ref() { return std::get<1>(settings_); }
const hasher& hash_ref() const { return std::get<1>(settings_); }
key_equal& eq_ref() { return std::get<2>(settings_); }
const key_equal& eq_ref() const { return std::get<2>(settings_); }
allocator_type& alloc_ref() { return std::get<3>(settings_); }
const allocator_type& alloc_ref() const {
return std::get<3>(settings_);
}
// TODO(alkis): Investigate removing some of these fields:
// - ctrl/slots can be derived from each other
// - size can be moved into the slot array
ctrl_t* ctrl_ = EmptyGroup(); // [(capacity + 1) * ctrl_t]
slot_type* slots_ = nullptr; // [capacity * slot_type]
size_t size_ = 0; // number of full slots
size_t capacity_ = 0; // total number of slots
HashtablezInfoHandle infoz_;
std::tuple<size_t /* growth_left */, hasher, key_equal, allocator_type>
settings_{0, hasher{}, key_equal{}, allocator_type{}};
};
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
template <class Policy, class Hash, class Eq, class Alloc>
class raw_hash_map : public raw_hash_set<Policy, Hash, Eq, Alloc>
{
// P is Policy. It's passed as a template argument to support maps that have
// incomplete types as values, as in unordered_map<K, IncompleteType>.
// MappedReference<> may be a non-reference type.
template <class P>
using MappedReference = decltype(P::value(
std::addressof(std::declval<typename raw_hash_map::reference>())));
// MappedConstReference<> may be a non-reference type.
template <class P>
using MappedConstReference = decltype(P::value(
std::addressof(std::declval<typename raw_hash_map::const_reference>())));
using KeyArgImpl =
KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
using Base = raw_hash_set<Policy, Hash, Eq, Alloc>;
public:
using key_type = typename Policy::key_type;
using mapped_type = typename Policy::mapped_type;
template <class K>
using key_arg = typename KeyArgImpl::template type<K, key_type>;
static_assert(!std::is_reference<key_type>::value, "");
// TODO(b/187807849): Evaluate whether to support reference mapped_type and
// remove this assertion if/when it is supported.
static_assert(!std::is_reference<mapped_type>::value, "");
using iterator = typename raw_hash_map::raw_hash_set::iterator;
using const_iterator = typename raw_hash_map::raw_hash_set::const_iterator;
raw_hash_map() {}
using Base::raw_hash_set; // use raw_hash_set constructor
// The last two template parameters ensure that both arguments are rvalues
// (lvalue arguments are handled by the overloads below). This is necessary
// for supporting bitfield arguments.
//
// union { int n : 1; };
// flat_hash_map<int, int> m;
// m.insert_or_assign(n, n);
template <class K = key_type, class V = mapped_type, K* = nullptr,
V* = nullptr>
std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, V&& v) {
return insert_or_assign_impl(std::forward<K>(k), std::forward<V>(v));
}
template <class K = key_type, class V = mapped_type, K* = nullptr>
std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, const V& v) {
return insert_or_assign_impl(std::forward<K>(k), v);
}
template <class K = key_type, class V = mapped_type, V* = nullptr>
std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, V&& v) {
return insert_or_assign_impl(k, std::forward<V>(v));
}
template <class K = key_type, class V = mapped_type>
std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, const V& v) {
return insert_or_assign_impl(k, v);
}
template <class K = key_type, class V = mapped_type, K* = nullptr,
V* = nullptr>
iterator insert_or_assign(const_iterator, key_arg<K>&& k, V&& v) {
return insert_or_assign(std::forward<K>(k), std::forward<V>(v)).first;
}
template <class K = key_type, class V = mapped_type, K* = nullptr>
iterator insert_or_assign(const_iterator, key_arg<K>&& k, const V& v) {
return insert_or_assign(std::forward<K>(k), v).first;
}
template <class K = key_type, class V = mapped_type, V* = nullptr>
iterator insert_or_assign(const_iterator, const key_arg<K>& k, V&& v) {
return insert_or_assign(k, std::forward<V>(v)).first;
}
template <class K = key_type, class V = mapped_type>
iterator insert_or_assign(const_iterator, const key_arg<K>& k, const V& v) {
return insert_or_assign(k, v).first;
}
template <class K = key_type, class... Args,
typename std::enable_if<
!std::is_convertible<K, const_iterator>::value, int>::type = 0,
K* = nullptr>
std::pair<iterator, bool> try_emplace(key_arg<K>&& k, Args&&... args) {
return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...);
}
template <class K = key_type, class... Args,
typename std::enable_if<
!std::is_convertible<K, const_iterator>::value, int>::type = 0>
std::pair<iterator, bool> try_emplace(const key_arg<K>& k, Args&&... args) {
return try_emplace_impl(k, std::forward<Args>(args)...);
}
template <class K = key_type, class... Args, K* = nullptr>
iterator try_emplace(const_iterator, key_arg<K>&& k, Args&&... args) {
return try_emplace(std::forward<K>(k), std::forward<Args>(args)...).first;
}
template <class K = key_type, class... Args>
iterator try_emplace(const_iterator, const key_arg<K>& k, Args&&... args) {
return try_emplace(k, std::forward<Args>(args)...).first;
}
template <class K = key_type, class P = Policy>
MappedReference<P> at(const key_arg<K>& key) {
auto it = this->find(key);
if (it == this->end())
phmap::base_internal::ThrowStdOutOfRange("phmap at(): lookup non-existent key");
return Policy::value(&*it);
}
template <class K = key_type, class P = Policy>
MappedConstReference<P> at(const key_arg<K>& key) const {
auto it = this->find(key);
if (it == this->end())
phmap::base_internal::ThrowStdOutOfRange("phmap at(): lookup non-existent key");
return Policy::value(&*it);
}
template <class K = key_type, class P = Policy, K* = nullptr>
MappedReference<P> operator[](key_arg<K>&& key) {
return Policy::value(&*try_emplace(std::forward<K>(key)).first);
}
template <class K = key_type, class P = Policy>
MappedReference<P> operator[](const key_arg<K>& key) {
return Policy::value(&*try_emplace(key).first);
}
private:
template <class K, class V>
std::pair<iterator, bool> insert_or_assign_impl(K&& k, V&& v) {
size_t hashval = this->hash(k);
size_t offset = this->_find_key(k, hashval);
if (offset == (size_t)-1) {
offset = this->prepare_insert(hashval);
this->emplace_at(offset, std::forward<K>(k), std::forward<V>(v));
this->set_ctrl(offset, H2(hashval));
return {this->iterator_at(offset), true};
}
Policy::value(&*this->iterator_at(offset)) = std::forward<V>(v);
return {this->iterator_at(offset), false};
}
template <class K = key_type, class... Args>
std::pair<iterator, bool> try_emplace_impl(K&& k, Args&&... args) {
size_t hashval = this->hash(k);
size_t offset = this->_find_key(k, hashval);
if (offset == (size_t)-1) {
offset = this->prepare_insert(hashval);
this->emplace_at(offset, std::piecewise_construct,
std::forward_as_tuple(std::forward<K>(k)),
std::forward_as_tuple(std::forward<Args>(args)...));
this->set_ctrl(offset, H2(hashval));
return {this->iterator_at(offset), true};
}
return {this->iterator_at(offset), false};
}
};
// ----------------------------------------------------------------------------
// ----------------------------------------------------------------------------
// Returns "random" seed.
inline size_t RandomSeed()
{
#if PHMAP_HAVE_THREAD_LOCAL
static thread_local size_t counter = 0;
size_t value = ++counter;
#else // PHMAP_HAVE_THREAD_LOCAL
static std::atomic<size_t> counter(0);
size_t value = counter.fetch_add(1, std::memory_order_relaxed);
#endif // PHMAP_HAVE_THREAD_LOCAL
return value ^ static_cast<size_t>(reinterpret_cast<uintptr_t>(&counter));
}
// ----------------------------------------------------------------------------
// ----------------------------------------------------------------------------
template <size_t N,
template <class, class, class, class> class RefSet,
class Mtx_,
class Policy, class Hash, class Eq, class Alloc>
class parallel_hash_set
{
using PolicyTraits = hash_policy_traits<Policy>;
using KeyArgImpl =
KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
static_assert(N <= 12, "N = 12 means 4096 hash tables!");
constexpr static size_t num_tables = 1 << N;
constexpr static size_t mask = num_tables - 1;
public:
using EmbeddedSet = RefSet<Policy, Hash, Eq, Alloc>;
using EmbeddedIterator= typename EmbeddedSet::iterator;
using EmbeddedConstIterator= typename EmbeddedSet::const_iterator;
using constructor = typename EmbeddedSet::constructor;
using init_type = typename PolicyTraits::init_type;
using key_type = typename PolicyTraits::key_type;
using slot_type = typename PolicyTraits::slot_type;
using allocator_type = Alloc;
using size_type = size_t;
using difference_type = ptrdiff_t;
using hasher = Hash;
using key_equal = Eq;
using policy_type = Policy;
using value_type = typename PolicyTraits::value_type;
using reference = value_type&;
using const_reference = const value_type&;
using pointer = typename phmap::allocator_traits<
allocator_type>::template rebind_traits<value_type>::pointer;
using const_pointer = typename phmap::allocator_traits<
allocator_type>::template rebind_traits<value_type>::const_pointer;
// Alias used for heterogeneous lookup functions.
// `key_arg<K>` evaluates to `K` when the functors are transparent and to
// `key_type` otherwise. It permits template argument deduction on `K` for the
// transparent case.
// --------------------------------------------------------------------
template <class K>
using key_arg = typename KeyArgImpl::template type<K, key_type>;
protected:
using Lockable = phmap::LockableImpl<Mtx_>;
using UniqueLock = typename Lockable::UniqueLock;
using SharedLock = typename Lockable::SharedLock;
using ReadWriteLock = typename Lockable::ReadWriteLock;
// --------------------------------------------------------------------
struct Inner : public Lockable
{
struct Params
{
size_t bucket_cnt;
const hasher& hashfn;
const key_equal& eq;
const allocator_type& alloc;
};
Inner() {}
Inner(Params const &p) : set_(p.bucket_cnt, p.hashfn, p.eq, p.alloc)
{}
bool operator==(const Inner& o) const
{
typename Lockable::SharedLocks l(const_cast<Inner &>(*this), const_cast<Inner &>(o));
return set_ == o.set_;
}
EmbeddedSet set_;
};
private:
// Give an early error when key_type is not hashable/eq.
// --------------------------------------------------------------------
auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
using AllocTraits = phmap::allocator_traits<allocator_type>;
static_assert(std::is_lvalue_reference<reference>::value,
"Policy::element() must return a reference");
template <typename T>
struct SameAsElementReference : std::is_same<
typename std::remove_cv<typename std::remove_reference<reference>::type>::type,
typename std::remove_cv<typename std::remove_reference<T>::type>::type> {};
// An enabler for insert(T&&): T must be convertible to init_type or be the
// same as [cv] value_type [ref].
// Note: we separate SameAsElementReference into its own type to avoid using
// reference unless we need to. MSVC doesn't seem to like it in some
// cases.
// --------------------------------------------------------------------
template <class T>
using RequiresInsertable = typename std::enable_if<
phmap::disjunction<std::is_convertible<T, init_type>, SameAsElementReference<T>>::value, int>::type;
// RequiresNotInit is a workaround for gcc prior to 7.1.
// See https://godbolt.org/g/Y4xsUh.
template <class T>
using RequiresNotInit =
typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;
template <class... Ts>
using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;
public:
static_assert(std::is_same<pointer, value_type*>::value,
"Allocators with custom pointer types are not supported");
static_assert(std::is_same<const_pointer, const value_type*>::value,
"Allocators with custom pointer types are not supported");
// --------------------- i t e r a t o r ------------------------------
class iterator
{
friend class parallel_hash_set;
public:
using iterator_category = std::forward_iterator_tag;
using value_type = typename parallel_hash_set::value_type;
using reference =
phmap::conditional_t<PolicyTraits::constant_iterators::value,
const value_type&, value_type&>;
using pointer = phmap::remove_reference_t<reference>*;
using difference_type = typename parallel_hash_set::difference_type;
using Inner = typename parallel_hash_set::Inner;
using EmbeddedSet = typename parallel_hash_set::EmbeddedSet;
using EmbeddedIterator = typename EmbeddedSet::iterator;
iterator() {}
reference operator*() const { return *it_; }
pointer operator->() const { return &operator*(); }
iterator& operator++() {
assert(inner_); // null inner means we are already at the end
++it_;
skip_empty();
return *this;
}
iterator operator++(int) {
assert(inner_); // null inner means we are already at the end
auto tmp = *this;
++*this;
return tmp;
}
friend bool operator==(const iterator& a, const iterator& b) {
return a.inner_ == b.inner_ && (!a.inner_ || a.it_ == b.it_);
}
friend bool operator!=(const iterator& a, const iterator& b) {
return !(a == b);
}
private:
iterator(Inner *inner, Inner *inner_end, const EmbeddedIterator& it) :
inner_(inner), inner_end_(inner_end), it_(it) { // for begin() and end()
if (inner)
it_end_ = inner->set_.end();
}
void skip_empty() {
while (it_ == it_end_) {
++inner_;
if (inner_ == inner_end_) {
inner_ = nullptr; // marks end()
break;
}
else {
it_ = inner_->set_.begin();
it_end_ = inner_->set_.end();
}
}
}
Inner *inner_ = nullptr;
Inner *inner_end_ = nullptr;
EmbeddedIterator it_, it_end_;
};
// --------------------- c o n s t i t e r a t o r -----------------
class const_iterator
{
friend class parallel_hash_set;
public:
using iterator_category = typename iterator::iterator_category;
using value_type = typename parallel_hash_set::value_type;
using reference = typename parallel_hash_set::const_reference;
using pointer = typename parallel_hash_set::const_pointer;
using difference_type = typename parallel_hash_set::difference_type;
using Inner = typename parallel_hash_set::Inner;
const_iterator() {}
// Implicit construction from iterator.
const_iterator(iterator i) : iter_(std::move(i)) {}
reference operator*() const { return *(iter_); }
pointer operator->() const { return iter_.operator->(); }
const_iterator& operator++() {
++iter_;
return *this;
}
const_iterator operator++(int) { return iter_++; }
friend bool operator==(const const_iterator& a, const const_iterator& b) {
return a.iter_ == b.iter_;
}
friend bool operator!=(const const_iterator& a, const const_iterator& b) {
return !(a == b);
}
private:
const_iterator(const Inner *inner, const Inner *inner_end, const EmbeddedIterator& it)
: iter_(const_cast<Inner**>(inner),
const_cast<Inner**>(inner_end),
const_cast<EmbeddedIterator*>(it)) {}
iterator iter_;
};
using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>;
using insert_return_type = InsertReturnType<iterator, node_type>;
// ------------------------- c o n s t r u c t o r s ------------------
parallel_hash_set() noexcept(
std::is_nothrow_default_constructible<hasher>::value&&
std::is_nothrow_default_constructible<key_equal>::value&&
std::is_nothrow_default_constructible<allocator_type>::value) {}
#if (__cplusplus >= 201703L || _MSVC_LANG >= 201402) && (defined(_MSC_VER) || defined(__clang__) || (defined(__GNUC__) && __GNUC__ > 6))
explicit parallel_hash_set(size_t bucket_cnt,
const hasher& hash_param = hasher(),
const key_equal& eq = key_equal(),
const allocator_type& alloc = allocator_type()) :
parallel_hash_set(typename Inner::Params{bucket_cnt, hash_param, eq, alloc},
phmap::make_index_sequence<num_tables>{})
{}
template <std::size_t... i>
parallel_hash_set(typename Inner::Params const &p,
phmap::index_sequence<i...>) : sets_{((void)i, p)...}
{}
#else
explicit parallel_hash_set(size_t bucket_cnt,
const hasher& hash_param = hasher(),
const key_equal& eq = key_equal(),
const allocator_type& alloc = allocator_type()) {
for (auto& inner : sets_)
inner.set_ = EmbeddedSet(bucket_cnt / N, hash_param, eq, alloc);
}
#endif
parallel_hash_set(size_t bucket_cnt,
const hasher& hash_param,
const allocator_type& alloc)
: parallel_hash_set(bucket_cnt, hash_param, key_equal(), alloc) {}
parallel_hash_set(size_t bucket_cnt, const allocator_type& alloc)
: parallel_hash_set(bucket_cnt, hasher(), key_equal(), alloc) {}
explicit parallel_hash_set(const allocator_type& alloc)
: parallel_hash_set(0, hasher(), key_equal(), alloc) {}
template <class InputIter>
parallel_hash_set(InputIter first, InputIter last, size_t bucket_cnt = 0,
const hasher& hash_param = hasher(), const key_equal& eq = key_equal(),
const allocator_type& alloc = allocator_type())
: parallel_hash_set(bucket_cnt, hash_param, eq, alloc) {
insert(first, last);
}
template <class InputIter>
parallel_hash_set(InputIter first, InputIter last, size_t bucket_cnt,
const hasher& hash_param, const allocator_type& alloc)
: parallel_hash_set(first, last, bucket_cnt, hash_param, key_equal(), alloc) {}
template <class InputIter>
parallel_hash_set(InputIter first, InputIter last, size_t bucket_cnt,
const allocator_type& alloc)
: parallel_hash_set(first, last, bucket_cnt, hasher(), key_equal(), alloc) {}
template <class InputIter>
parallel_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
: parallel_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}
// Instead of accepting std::initializer_list<value_type> as the first
// argument like std::unordered_set<value_type> does, we have two overloads
// that accept std::initializer_list<T> and std::initializer_list<init_type>.
// This is advantageous for performance.
//
// // Turns {"abc", "def"} into std::initializer_list<std::string>, then copies
// // the strings into the set.
// std::unordered_set<std::string> s = {"abc", "def"};
//
// // Turns {"abc", "def"} into std::initializer_list<const char*>, then
// // copies the strings into the set.
// phmap::flat_hash_set<std::string> s = {"abc", "def"};
//
// The same trick is used in insert().
//
// The enabler is necessary to prevent this constructor from triggering where
// the copy constructor is meant to be called.
//
// phmap::flat_hash_set<int> a, b{a};
//
// RequiresNotInit<T> is a workaround for gcc prior to 7.1.
// --------------------------------------------------------------------
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
parallel_hash_set(std::initializer_list<T> init, size_t bucket_cnt = 0,
const hasher& hash_param = hasher(), const key_equal& eq = key_equal(),
const allocator_type& alloc = allocator_type())
: parallel_hash_set(init.begin(), init.end(), bucket_cnt, hash_param, eq, alloc) {}
parallel_hash_set(std::initializer_list<init_type> init, size_t bucket_cnt = 0,
const hasher& hash_param = hasher(), const key_equal& eq = key_equal(),
const allocator_type& alloc = allocator_type())
: parallel_hash_set(init.begin(), init.end(), bucket_cnt, hash_param, eq, alloc) {}
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
parallel_hash_set(std::initializer_list<T> init, size_t bucket_cnt,
const hasher& hash_param, const allocator_type& alloc)
: parallel_hash_set(init, bucket_cnt, hash_param, key_equal(), alloc) {}
parallel_hash_set(std::initializer_list<init_type> init, size_t bucket_cnt,
const hasher& hash_param, const allocator_type& alloc)
: parallel_hash_set(init, bucket_cnt, hash_param, key_equal(), alloc) {}
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
parallel_hash_set(std::initializer_list<T> init, size_t bucket_cnt,
const allocator_type& alloc)
: parallel_hash_set(init, bucket_cnt, hasher(), key_equal(), alloc) {}
parallel_hash_set(std::initializer_list<init_type> init, size_t bucket_cnt,
const allocator_type& alloc)
: parallel_hash_set(init, bucket_cnt, hasher(), key_equal(), alloc) {}
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
parallel_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
: parallel_hash_set(init, 0, hasher(), key_equal(), alloc) {}
parallel_hash_set(std::initializer_list<init_type> init,
const allocator_type& alloc)
: parallel_hash_set(init, 0, hasher(), key_equal(), alloc) {}
parallel_hash_set(const parallel_hash_set& that)
: parallel_hash_set(that, AllocTraits::select_on_container_copy_construction(
that.alloc_ref())) {}
parallel_hash_set(const parallel_hash_set& that, const allocator_type& a)
: parallel_hash_set(0, that.hash_ref(), that.eq_ref(), a) {
for (size_t i=0; i<num_tables; ++i)
sets_[i].set_ = { that.sets_[i].set_, a };
}
parallel_hash_set(parallel_hash_set&& that) noexcept(
std::is_nothrow_copy_constructible<hasher>::value&&
std::is_nothrow_copy_constructible<key_equal>::value&&
std::is_nothrow_copy_constructible<allocator_type>::value)
: parallel_hash_set(std::move(that), that.alloc_ref()) {
}
parallel_hash_set(parallel_hash_set&& that, const allocator_type& a)
{
for (size_t i=0; i<num_tables; ++i)
sets_[i].set_ = { std::move(that.sets_[i]).set_, a };
}
parallel_hash_set& operator=(const parallel_hash_set& that) {
for (size_t i=0; i<num_tables; ++i)
sets_[i].set_ = that.sets_[i].set_;
return *this;
}
parallel_hash_set& operator=(parallel_hash_set&& that) noexcept(
phmap::allocator_traits<allocator_type>::is_always_equal::value &&
std::is_nothrow_move_assignable<hasher>::value &&
std::is_nothrow_move_assignable<key_equal>::value) {
for (size_t i=0; i<num_tables; ++i)
sets_[i].set_ = std::move(that.sets_[i].set_);
return *this;
}
~parallel_hash_set() {}
iterator begin() {
auto it = iterator(&sets_[0], &sets_[0] + num_tables, sets_[0].set_.begin());
it.skip_empty();
return it;
}
iterator end() { return iterator(); }
const_iterator begin() const { return const_cast<parallel_hash_set *>(this)->begin(); }
const_iterator end() const { return const_cast<parallel_hash_set *>(this)->end(); }
const_iterator cbegin() const { return begin(); }
const_iterator cend() const { return end(); }
bool empty() const { return !size(); }
size_t size() const {
size_t sz = 0;
for (const auto& inner : sets_)
sz += inner.set_.size();
return sz;
}
size_t capacity() const {
size_t c = 0;
for (const auto& inner : sets_)
c += inner.set_.capacity();
return c;
}
size_t max_size() const { return (std::numeric_limits<size_t>::max)(); }
PHMAP_ATTRIBUTE_REINITIALIZES void clear() {
for (auto& inner : sets_)
{
UniqueLock m(inner);
inner.set_.clear();
}
}
// extension - clears only soecified submap
// ----------------------------------------
void clear(std::size_t submap_index) {
Inner& inner = sets_[submap_index];
UniqueLock m(inner);
inner.set_.clear();
}
// This overload kicks in when the argument is an rvalue of insertable and
// decomposable type other than init_type.
//
// flat_hash_map<std::string, int> m;
// m.insert(std::make_pair("abc", 42));
// --------------------------------------------------------------------
template <class T, RequiresInsertable<T> = 0,
typename std::enable_if<IsDecomposable<T>::value, int>::type = 0,
T* = nullptr>
std::pair<iterator, bool> insert(T&& value) {
return emplace(std::forward<T>(value));
}
// This overload kicks in when the argument is a bitfield or an lvalue of
// insertable and decomposable type.
//
// union { int n : 1; };
// flat_hash_set<int> s;
// s.insert(n);
//
// flat_hash_set<std::string> s;
// const char* p = "hello";
// s.insert(p);
//
// TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
// RequiresInsertable<T> with RequiresInsertable<const T&>.
// We are hitting this bug: https://godbolt.org/g/1Vht4f.
// --------------------------------------------------------------------
template <
class T, RequiresInsertable<T> = 0,
typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
std::pair<iterator, bool> insert(const T& value) {
return emplace(value);
}
// This overload kicks in when the argument is an rvalue of init_type. Its
// purpose is to handle brace-init-list arguments.
//
// flat_hash_set<std::pair<std::string, int>> s;
// s.insert({"abc", 42});
// --------------------------------------------------------------------
std::pair<iterator, bool> insert(init_type&& value) {
return emplace(std::move(value));
}
template <class T, RequiresInsertable<T> = 0,
typename std::enable_if<IsDecomposable<T>::value, int>::type = 0,
T* = nullptr>
iterator insert(const_iterator, T&& value) {
return insert(std::forward<T>(value)).first;
}
// TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
// RequiresInsertable<T> with RequiresInsertable<const T&>.
// We are hitting this bug: https://godbolt.org/g/1Vht4f.
// --------------------------------------------------------------------
template <
class T, RequiresInsertable<T> = 0,
typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
iterator insert(const_iterator, const T& value) {
return insert(value).first;
}
iterator insert(const_iterator, init_type&& value) {
return insert(std::move(value)).first;
}
template <class InputIt>
void insert(InputIt first, InputIt last) {
for (; first != last; ++first) insert(*first);
}
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0>
void insert(std::initializer_list<T> ilist) {
insert(ilist.begin(), ilist.end());
}
void insert(std::initializer_list<init_type> ilist) {
insert(ilist.begin(), ilist.end());
}
insert_return_type insert(node_type&& node) {
if (!node)
return {end(), false, node_type()};
auto& key = node.key();
size_t hashval = this->hash(key);
Inner& inner = sets_[subidx(hashval)];
auto& set = inner.set_;
UniqueLock m(inner);
auto res = set.insert(std::move(node), hashval);
return { make_iterator(&inner, res.position),
res.inserted,
res.inserted ? node_type() : std::move(res.node) };
}
iterator insert(const_iterator, node_type&& node) {
return insert(std::move(node)).first;
}
struct ReturnKey_
{
template <class Key, class... Args>
Key operator()(Key&& k, const Args&...) const {
return std::forward<Key>(k);
}
};
// --------------------------------------------------------------------
// phmap extension: emplace_with_hash
// ----------------------------------
// same as emplace, but hashval is provided
// --------------------------------------------------------------------
struct EmplaceDecomposableHashval
{
template <class K, class... Args>
std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
return s.emplace_decomposable_with_hash(key, hashval, std::forward<Args>(args)...);
}
parallel_hash_set& s;
size_t hashval;
};
// This overload kicks in if we can deduce the key from args. This enables us
// to avoid constructing value_type if an entry with the same key already
// exists.
//
// For example:
//
// flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
// // Creates no std::string copies and makes no heap allocations.
// m.emplace("abc", "xyz");
// --------------------------------------------------------------------
template <class... Args, typename std::enable_if<IsDecomposable<Args...>::value, int>::type = 0>
std::pair<iterator, bool> emplace_with_hash(size_t hashval, Args&&... args) {
return PolicyTraits::apply(EmplaceDecomposableHashval{*this, hashval},
std::forward<Args>(args)...);
}
// This overload kicks in if we cannot deduce the key from args. It constructs
// value_type unconditionally and then either moves it into the table or
// destroys.
// --------------------------------------------------------------------
template <class... Args, typename std::enable_if<!IsDecomposable<Args...>::value, int>::type = 0>
std::pair<iterator, bool> emplace_with_hash(size_t hashval, Args&&... args) {
typename phmap::aligned_storage<sizeof(slot_type), alignof(slot_type)>::type raw;
slot_type* slot = reinterpret_cast<slot_type*>(&raw);
PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
const auto& elem = PolicyTraits::element(slot);
Inner& inner = sets_[subidx(hashval)];
auto& set = inner.set_;
UniqueLock m(inner);
typename EmbeddedSet::template InsertSlotWithHash<true> f { inner, std::move(*slot), hashval };
return make_rv(PolicyTraits::apply(f, elem));
}
template <class... Args>
iterator emplace_hint_with_hash(size_t hashval, const_iterator, Args&&... args) {
return emplace_with_hash(hashval, std::forward<Args>(args)...).first;
}
// --------------------------------------------------------------------
// end of phmap expension
// --------------------------------------------------------------------
template <class K, class... Args>
std::pair<iterator, bool> emplace_decomposable_with_hash(const K& key, size_t hashval, Args&&... args)
{
Inner& inner = sets_[subidx(hashval)];
auto& set = inner.set_;
ReadWriteLock m(inner);
size_t offset = set._find_key(key, hashval);
if (offset == (size_t)-1 && m.switch_to_unique()) {
// we did an unlock/lock, and another thread could have inserted the same key, so we need to
// do a find() again.
offset = set._find_key(key, hashval);
}
if (offset == (size_t)-1) {
offset = set.prepare_insert(hashval);
set.emplace_at(offset, std::forward<Args>(args)...);
set.set_ctrl(offset, H2(hashval));
return make_rv(&inner, {set.iterator_at(offset), true});
}
return make_rv(&inner, {set.iterator_at(offset), false});
}
template <class K, class... Args>
std::pair<iterator, bool> emplace_decomposable(const K& key, Args&&... args)
{
return emplace_decomposable_with_hash(key, this->hash(key), std::forward<Args>(args)...);
}
struct EmplaceDecomposable
{
template <class K, class... Args>
std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
return s.emplace_decomposable(key, std::forward<Args>(args)...);
}
parallel_hash_set& s;
};
// This overload kicks in if we can deduce the key from args. This enables us
// to avoid constructing value_type if an entry with the same key already
// exists.
//
// For example:
//
// flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
// // Creates no std::string copies and makes no heap allocations.
// m.emplace("abc", "xyz");
// --------------------------------------------------------------------
template <class... Args, typename std::enable_if<IsDecomposable<Args...>::value, int>::type = 0>
std::pair<iterator, bool> emplace(Args&&... args) {
return PolicyTraits::apply(EmplaceDecomposable{*this}, std::forward<Args>(args)...);
}
// This overload kicks in if we cannot deduce the key from args. It constructs
// value_type unconditionally and then either moves it into the table or
// destroys.
// --------------------------------------------------------------------
template <class... Args, typename std::enable_if<!IsDecomposable<Args...>::value, int>::type = 0>
std::pair<iterator, bool> emplace(Args&&... args) {
typename phmap::aligned_storage<sizeof(slot_type), alignof(slot_type)>::type raw;
slot_type* slot = reinterpret_cast<slot_type*>(&raw);
size_t hashval = this->hash(PolicyTraits::key(slot));
PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
const auto& elem = PolicyTraits::element(slot);
Inner& inner = sets_[subidx(hashval)];
auto& set = inner.set_;
UniqueLock m(inner);
typename EmbeddedSet::template InsertSlotWithHash<true> f { inner, std::move(*slot), hashval };
return make_rv(PolicyTraits::apply(f, elem));
}
template <class... Args>
iterator emplace_hint(const_iterator, Args&&... args) {
return emplace(std::forward<Args>(args)...).first;
}
iterator make_iterator(Inner* inner, const EmbeddedIterator it)
{
if (it == inner->set_.end())
return iterator();
return iterator(inner, &sets_[0] + num_tables, it);
}
std::pair<iterator, bool> make_rv(Inner* inner,
const std::pair<EmbeddedIterator, bool>& res)
{
return {iterator(inner, &sets_[0] + num_tables, res.first), res.second};
}
// lazy_emplace
// ------------
template <class K = key_type, class F>
iterator lazy_emplace_with_hash(const key_arg<K>& key, size_t hashval, F&& f) {
Inner& inner = sets_[subidx(hashval)];
auto& set = inner.set_;
ReadWriteLock m(inner);
size_t offset = set._find_key(key, hashval);
if (offset == (size_t)-1 && m.switch_to_unique()) {
// we did an unlock/lock, and another thread could have inserted the same key, so we need to
// do a find() again.
offset = set._find_key(key, hashval);
}
if (offset == (size_t)-1) {
offset = set.prepare_insert(hashval);
set.lazy_emplace_at(offset, std::forward<F>(f));
set.set_ctrl(offset, H2(hashval));
}
return make_iterator(&inner, set.iterator_at(offset));
}
template <class K = key_type, class F>
iterator lazy_emplace(const key_arg<K>& key, F&& f) {
return lazy_emplace_with_hash(key, this->hash(key), std::forward<F>(f));
}
// emplace_single
// --------------
template <class K = key_type, class F>
void emplace_single_with_hash(const key_arg<K>& key, size_t hashval, F&& f) {
Inner& inner = sets_[subidx(hashval)];
auto& set = inner.set_;
UniqueLock m(inner);
set.emplace_single_with_hash(key, hashval, std::forward<F>(f));
}
template <class K = key_type, class F>
void emplace_single(const key_arg<K>& key, F&& f) {
emplace_single_with_hash<K, F>(key, this->hash(key), std::forward<F>(f));
}
// if set contains key, lambda is called with the value_type (under read lock protection),
// and if_contains returns true. This is a const API and lambda should not modify the value
// -----------------------------------------------------------------------------------------
template <class K = key_type, class F>
bool if_contains(const key_arg<K>& key, F&& f) const {
return const_cast<parallel_hash_set*>(this)->template
modify_if_impl<K, F, SharedLock>(key, std::forward<F>(f));
}
// if set contains key, lambda is called with the value_type without read lock protection,
// and if_contains_unsafe returns true. This is a const API and lambda should not modify the value
// This should be used only if we know that no other thread may be mutating the set at the time.
// -----------------------------------------------------------------------------------------
template <class K = key_type, class F>
bool if_contains_unsafe(const key_arg<K>& key, F&& f) const {
return const_cast<parallel_hash_set*>(this)->template
modify_if_impl<K, F, LockableBaseImpl<phmap::NullMutex>::DoNothing>(key, std::forward<F>(f));
}
// if map contains key, lambda is called with the value_type (under write lock protection),
// and modify_if returns true. This is a non-const API and lambda is allowed to modify the mapped value
// ----------------------------------------------------------------------------------------------------
template <class K = key_type, class F>
bool modify_if(const key_arg<K>& key, F&& f) {
return modify_if_impl<K, F, UniqueLock>(key, std::forward<F>(f));
}
// -----------------------------------------------------------------------------------------
template <class K = key_type, class F, class L>
bool modify_if_impl(const key_arg<K>& key, F&& f) {
#if __cplusplus >= 201703L
static_assert(std::is_invocable<F, value_type&>::value);
#endif
L m;
auto ptr = this->template find_ptr<K, L>(key, this->hash(key), m);
if (ptr == nullptr)
return false;
std::forward<F>(f)(*ptr);
return true;
}
// if map contains key, lambda is called with the mapped value (under write lock protection).
// If the lambda returns true, the key is subsequently erased from the map (the write lock
// is only released after erase).
// returns true if key was erased, false otherwise.
// ----------------------------------------------------------------------------------------------------
template <class K = key_type, class F>
bool erase_if(const key_arg<K>& key, F&& f) {
return !!erase_if_impl<K, F, ReadWriteLock>(key, std::forward<F>(f));
}
template <class K = key_type, class F, class L>
size_type erase_if_impl(const key_arg<K>& key, F&& f) {
#if __cplusplus >= 201703L
static_assert(std::is_invocable<F, value_type&>::value);
#endif
auto hashval = this->hash(key);
Inner& inner = sets_[subidx(hashval)];
auto& set = inner.set_;
L m(inner);
auto it = set.find(key, hashval);
if (it == set.end())
return 0;
if (m.switch_to_unique()) {
// we did an unlock/lock, need to call `find()` again
it = set.find(key, hashval);
if (it == set.end())
return 0;
}
if (std::forward<F>(f)(const_cast<value_type &>(*it)))
{
set._erase(it);
return 1;
}
return 0;
}
// if map already contains key, the first lambda is called with the mapped value (under
// write lock protection) and can update the mapped value.
// if map does not contains key, the second lambda is called and it should invoke the
// passed constructor to construct the value
// returns true if key was not already present, false otherwise.
// ---------------------------------------------------------------------------------------
template <class K = key_type, class FExists, class FEmplace>
bool lazy_emplace_l(const key_arg<K>& key, FExists&& fExists, FEmplace&& fEmplace) {
size_t hashval = this->hash(key);
ReadWriteLock m;
auto res = this->find_or_prepare_insert_with_hash(hashval, key, m);
Inner* inner = std::get<0>(res);
if (std::get<2>(res)) {
// key not found. call fEmplace lambda which should invoke passed constructor
inner->set_.lazy_emplace_at(std::get<1>(res), std::forward<FEmplace>(fEmplace));
inner->set_.set_ctrl(std::get<1>(res), H2(hashval));
} else {
// key found. Call fExists lambda. In case of the set, non "key" part of value_type can be changed
auto it = this->iterator_at(inner, inner->set_.iterator_at(std::get<1>(res)));
std::forward<FExists>(fExists)(const_cast<value_type &>(*it));
}
return std::get<2>(res);
}
// Extension API: support iterating over all values
//
// flat_hash_set<std::string> s;
// s.insert(...);
// s.for_each([](auto const & key) {
// // Safely iterates over all the keys
// });
template <class F>
void for_each(F&& fCallback) const {
for (auto const& inner : sets_) {
SharedLock m(const_cast<Inner&>(inner));
std::for_each(inner.set_.begin(), inner.set_.end(), fCallback);
}
}
// this version allows to modify the values
template <class F>
void for_each_m(F&& fCallback) {
for (auto& inner : sets_) {
UniqueLock m(inner);
std::for_each(inner.set_.begin(), inner.set_.end(), fCallback);
}
}
#if __cplusplus >= 201703L
template <class ExecutionPolicy, class F>
void for_each(ExecutionPolicy&& policy, F&& fCallback) const {
std::for_each(
std::forward<ExecutionPolicy>(policy), sets_.begin(), sets_.end(),
[&](auto const& inner) {
SharedLock m(const_cast<Inner&>(inner));
std::for_each(inner.set_.begin(), inner.set_.end(), fCallback);
}
);
}
template <class ExecutionPolicy, class F>
void for_each_m(ExecutionPolicy&& policy, F&& fCallback) {
std::for_each(
std::forward<ExecutionPolicy>(policy), sets_.begin(), sets_.end(),
[&](auto& inner) {
UniqueLock m(inner);
std::for_each(inner.set_.begin(), inner.set_.end(), fCallback);
}
);
}
#endif
// Extension API: access internal submaps by index
// under lock protection
// ex: m.with_submap(i, [&](const Map::EmbeddedSet& set) {
// for (auto& p : set) { ...; }});
// -------------------------------------------------
template <class F>
void with_submap(size_t idx, F&& fCallback) const {
const Inner& inner = sets_[idx];
const auto& set = inner.set_;
SharedLock m(const_cast<Inner&>(inner));
fCallback(set);
}
template <class F>
void with_submap_m(size_t idx, F&& fCallback) {
Inner& inner = sets_[idx];
auto& set = inner.set_;
UniqueLock m(inner);
fCallback(set);
}
// unsafe, for internal use only
Inner& get_inner(size_t idx) {
return sets_[idx];
}
// Extension API: support for heterogeneous keys.
//
// std::unordered_set<std::string> s;
// // Turns "abc" into std::string.
// s.erase("abc");
//
// flat_hash_set<std::string> s;
// // Uses "abc" directly without copying it into std::string.
// s.erase("abc");
//
// --------------------------------------------------------------------
template <class K = key_type>
size_type erase(const key_arg<K>& key) {
auto always_erase = [](const value_type&){ return true; };
return erase_if_impl<K, decltype(always_erase), ReadWriteLock>(key, std::move(always_erase));
}
// --------------------------------------------------------------------
iterator erase(const_iterator cit) { return erase(cit.iter_); }
// Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`,
// this method returns void to reduce algorithmic complexity to O(1). In
// order to erase while iterating across a map, use the following idiom (which
// also works for standard containers):
//
// for (auto it = m.begin(), end = m.end(); it != end;) {
// if (<pred>) {
// m._erase(it++);
// } else {
// ++it;
// }
// }
//
// Do not use erase APIs taking iterators when accessing the map concurrently
// --------------------------------------------------------------------
void _erase(iterator it) {
Inner* inner = it.inner_;
assert(inner != nullptr);
auto& set = inner->set_;
// UniqueLock m(*inner); // don't lock here
set._erase(it.it_);
}
void _erase(const_iterator cit) { _erase(cit.iter_); }
// This overload is necessary because otherwise erase<K>(const K&) would be
// a better match if non-const iterator is passed as an argument.
// Do not use erase APIs taking iterators when accessing the map concurrently
// --------------------------------------------------------------------
iterator erase(iterator it) { _erase(it++); return it; }
iterator erase(const_iterator first, const_iterator last) {
while (first != last) {
_erase(first++);
}
return last.iter_;
}
// Moves elements from `src` into `this`.
// If the element already exists in `this`, it is left unmodified in `src`.
// Do not use erase APIs taking iterators when accessing the map concurrently
// --------------------------------------------------------------------
template <typename E = Eq>
void merge(parallel_hash_set<N, RefSet, Mtx_, Policy, Hash, E, Alloc>& src) { // NOLINT
assert(this != &src);
if (this != &src)
{
for (size_t i=0; i<num_tables; ++i)
{
typename Lockable::UniqueLocks l(sets_[i], src.sets_[i]);
sets_[i].set_.merge(src.sets_[i].set_);
}
}
}
template <typename E = Eq>
void merge(parallel_hash_set<N, RefSet, Mtx_, Policy, Hash, E, Alloc>&& src) {
merge(src);
}
node_type extract(const_iterator position) {
return position.iter_.inner_->set_.extract(EmbeddedConstIterator(position.iter_.it_));
}
template <
class K = key_type,
typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0>
node_type extract(const key_arg<K>& key) {
auto it = find(key);
return it == end() ? node_type() : extract(const_iterator{it});
}
template<class Mtx2_>
void swap(parallel_hash_set<N, RefSet, Mtx2_, Policy, Hash, Eq, Alloc>& that)
noexcept(IsNoThrowSwappable<EmbeddedSet>() &&
(!AllocTraits::propagate_on_container_swap::value ||
IsNoThrowSwappable<allocator_type>(typename AllocTraits::propagate_on_container_swap{})))
{
using std::swap;
using Lockable2 = phmap::LockableImpl<Mtx2_>;
for (size_t i=0; i<num_tables; ++i)
{
typename Lockable::UniqueLock l(sets_[i]);
typename Lockable2::UniqueLock l2(that.get_inner(i));
swap(sets_[i].set_, that.get_inner(i).set_);
}
}
void rehash(size_t n) {
size_t nn = n / num_tables;
for (auto& inner : sets_)
{
UniqueLock m(inner);
inner.set_.rehash(nn);
}
}
void reserve(size_t n)
{
size_t target = GrowthToLowerboundCapacity(n);
size_t normalized = num_tables * NormalizeCapacity(n / num_tables);
rehash(normalized > target ? normalized : target);
}
// Extension API: support for heterogeneous keys.
//
// std::unordered_set<std::string> s;
// // Turns "abc" into std::string.
// s.count("abc");
//
// ch_set<std::string> s;
// // Uses "abc" directly without copying it into std::string.
// s.count("abc");
// --------------------------------------------------------------------
template <class K = key_type>
size_t count(const key_arg<K>& key) const {
return find(key) == end() ? 0 : 1;
}
// Issues CPU prefetch instructions for the memory needed to find or insert
// a key. Like all lookup functions, this support heterogeneous keys.
//
// NOTE: This is a very low level operation and should not be used without
// specific benchmarks indicating its importance.
// --------------------------------------------------------------------
void prefetch_hash(size_t hashval) const {
const Inner& inner = sets_[subidx(hashval)];
const auto& set = inner.set_;
SharedLock m(const_cast<Inner&>(inner));
set.prefetch_hash(hashval);
}
template <class K = key_type>
void prefetch(const key_arg<K>& key) const {
prefetch_hash(this->hash(key));
}
// The API of find() has two extensions.
//
// 1. The hash can be passed by the user. It must be equal to the hash of the
// key.
//
// 2. The type of the key argument doesn't have to be key_type. This is so
// called heterogeneous key support.
// --------------------------------------------------------------------
template <class K = key_type>
iterator find(const key_arg<K>& key, size_t hashval) {
SharedLock m;
return find(key, hashval, m);
}
template <class K = key_type>
iterator find(const key_arg<K>& key) {
return find(key, this->hash(key));
}
template <class K = key_type>
const_iterator find(const key_arg<K>& key, size_t hashval) const {
return const_cast<parallel_hash_set*>(this)->find(key, hashval);
}
template <class K = key_type>
const_iterator find(const key_arg<K>& key) const {
return find(key, this->hash(key));
}
template <class K = key_type>
bool contains(const key_arg<K>& key) const {
return find(key) != end();
}
template <class K = key_type>
bool contains(const key_arg<K>& key, size_t hashval) const {
return find(key, hashval) != end();
}
template <class K = key_type>
std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
auto it = find(key);
if (it != end()) return {it, std::next(it)};
return {it, it};
}
template <class K = key_type>
std::pair<const_iterator, const_iterator> equal_range(
const key_arg<K>& key) const {
auto it = find(key);
if (it != end()) return {it, std::next(it)};
return {it, it};
}
size_t bucket_count() const {
size_t sz = 0;
for (const auto& inner : sets_)
{
SharedLock m(const_cast<Inner&>(inner));
sz += inner.set_.bucket_count();
}
return sz;
}
float load_factor() const {
size_t _capacity = bucket_count();
return _capacity ? static_cast<float>(static_cast<double>(size()) / _capacity) : 0;
}
float max_load_factor() const { return 1.0f; }
void max_load_factor(float) {
// Does nothing.
}
hasher hash_function() const { return hash_ref(); } // warning: doesn't match internal hash - use hash() member function
key_equal key_eq() const { return eq_ref(); }
allocator_type get_allocator() const { return alloc_ref(); }
friend bool operator==(const parallel_hash_set& a, const parallel_hash_set& b) {
return std::equal(a.sets_.begin(), a.sets_.end(), b.sets_.begin());
}
friend bool operator!=(const parallel_hash_set& a, const parallel_hash_set& b) {
return !(a == b);
}
template<class Mtx2_>
friend void swap(parallel_hash_set& a,
parallel_hash_set<N, RefSet, Mtx2_, Policy, Hash, Eq, Alloc>& b)
noexcept(noexcept(a.swap(b)))
{
a.swap(b);
}
template <class K>
size_t hash(const K& key) const {
return HashElement{hash_ref()}(key);
}
#if !defined(PHMAP_NON_DETERMINISTIC)
template<typename OutputArchive>
bool phmap_dump(OutputArchive& ar) const;
template<typename InputArchive>
bool phmap_load(InputArchive& ar);
#endif
private:
template <class Container, typename Enabler>
friend struct phmap::priv::hashtable_debug_internal::HashtableDebugAccess;
struct FindElement
{
template <class K, class... Args>
const_iterator operator()(const K& key, Args&&...) const {
return s.find(key);
}
const parallel_hash_set& s;
};
struct HashElement
{
template <class K, class... Args>
size_t operator()(const K& key, Args&&...) const {
return phmap_mix<sizeof(size_t)>()(h(key));
}
const hasher& h;
};
template <class K1>
struct EqualElement
{
template <class K2, class... Args>
bool operator()(const K2& lhs, Args&&...) const {
return eq(lhs, rhs);
}
const K1& rhs;
const key_equal& eq;
};
// "erases" the object from the container, except that it doesn't actually
// destroy the object. It only updates all the metadata of the class.
// This can be used in conjunction with Policy::transfer to move the object to
// another place.
// --------------------------------------------------------------------
void erase_meta_only(const_iterator cit) {
auto &it = cit.iter_;
assert(it.set_ != nullptr);
it.set_.erase_meta_only(const_iterator(it.it_));
}
void drop_deletes_without_resize() PHMAP_ATTRIBUTE_NOINLINE {
for (auto& inner : sets_)
{
UniqueLock m(inner);
inner.set_.drop_deletes_without_resize();
}
}
bool has_element(const value_type& elem) const {
size_t hashval = PolicyTraits::apply(HashElement{hash_ref()}, elem);
Inner& inner = sets_[subidx(hashval)];
auto& set = inner.set_;
SharedLock m(const_cast<Inner&>(inner));
return set.has_element(elem, hashval);
}
// TODO(alkis): Optimize this assuming *this and that don't overlap.
// --------------------------------------------------------------------
template<class Mtx2_>
parallel_hash_set& move_assign(parallel_hash_set<N, RefSet, Mtx2_, Policy, Hash, Eq, Alloc>&& that, std::true_type) {
parallel_hash_set<N, RefSet, Mtx2_, Policy, Hash, Eq, Alloc> tmp(std::move(that));
swap(tmp);
return *this;
}
template<class Mtx2_>
parallel_hash_set& move_assign(parallel_hash_set<N, RefSet, Mtx2_, Policy, Hash, Eq, Alloc>&& that, std::false_type) {
parallel_hash_set<N, RefSet, Mtx2_, Policy, Hash, Eq, Alloc> tmp(std::move(that), alloc_ref());
swap(tmp);
return *this;
}
protected:
template <class K = key_type, class L = SharedLock>
pointer find_ptr(const key_arg<K>& key, size_t hashval, L& mutexlock)
{
Inner& inner = sets_[subidx(hashval)];
auto& set = inner.set_;
mutexlock = std::move(L(inner));
return set.find_ptr(key, hashval);
}
template <class K = key_type, class L = SharedLock>
iterator find(const key_arg<K>& key, size_t hashval, L& mutexlock) {
Inner& inner = sets_[subidx(hashval)];
auto& set = inner.set_;
mutexlock = std::move(L(inner));
return make_iterator(&inner, set.find(key, hashval));
}
template <class K>
std::tuple<Inner*, size_t, bool>
find_or_prepare_insert_with_hash(size_t hashval, const K& key, ReadWriteLock &mutexlock) {
Inner& inner = sets_[subidx(hashval)];
auto& set = inner.set_;
mutexlock = std::move(ReadWriteLock(inner));
size_t offset = set._find_key(key, hashval);
if (offset == (size_t)-1 && mutexlock.switch_to_unique()) {
// we did an unlock/lock, and another thread could have inserted the same key, so we need to
// do a find() again.
offset = set._find_key(key, hashval);
}
if (offset == (size_t)-1) {
offset = set.prepare_insert(hashval);
return std::make_tuple(&inner, offset, true);
}
return std::make_tuple(&inner, offset, false);
}
template <class K>
std::tuple<Inner*, size_t, bool>
find_or_prepare_insert(const K& key, ReadWriteLock &mutexlock) {
return find_or_prepare_insert_with_hash<K>(this->hash(key), key, mutexlock);
}
iterator iterator_at(Inner *inner,
const EmbeddedIterator& it) {
return {inner, &sets_[0] + num_tables, it};
}
const_iterator iterator_at(Inner *inner,
const EmbeddedIterator& it) const {
return {inner, &sets_[0] + num_tables, it};
}
static size_t subidx(size_t hashval) {
return ((hashval >> 8) ^ (hashval >> 16) ^ (hashval >> 24)) & mask;
}
static size_t subcnt() {
return num_tables;
}
private:
friend struct RawHashSetTestOnlyAccess;
size_t growth_left() {
size_t sz = 0;
for (const auto& set : sets_)
sz += set.growth_left();
return sz;
}
hasher& hash_ref() { return sets_[0].set_.hash_ref(); }
const hasher& hash_ref() const { return sets_[0].set_.hash_ref(); }
key_equal& eq_ref() { return sets_[0].set_.eq_ref(); }
const key_equal& eq_ref() const { return sets_[0].set_.eq_ref(); }
allocator_type& alloc_ref() { return sets_[0].set_.alloc_ref(); }
const allocator_type& alloc_ref() const {
return sets_[0].set_.alloc_ref();
}
protected: // protected in case users want to derive fromm this
std::array<Inner, num_tables> sets_;
};
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
template <size_t N,
template <class, class, class, class> class RefSet,
class Mtx_,
class Policy, class Hash, class Eq, class Alloc>
class parallel_hash_map : public parallel_hash_set<N, RefSet, Mtx_, Policy, Hash, Eq, Alloc>
{
// P is Policy. It's passed as a template argument to support maps that have
// incomplete types as values, as in unordered_map<K, IncompleteType>.
// MappedReference<> may be a non-reference type.
template <class P>
using MappedReference = decltype(P::value(
std::addressof(std::declval<typename parallel_hash_map::reference>())));
// MappedConstReference<> may be a non-reference type.
template <class P>
using MappedConstReference = decltype(P::value(
std::addressof(std::declval<typename parallel_hash_map::const_reference>())));
using KeyArgImpl =
KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
using Base = typename parallel_hash_map::parallel_hash_set;
using Lockable = phmap::LockableImpl<Mtx_>;
using UniqueLock = typename Lockable::UniqueLock;
using SharedLock = typename Lockable::SharedLock;
using ReadWriteLock = typename Lockable::ReadWriteLock;
public:
using key_type = typename Policy::key_type;
using mapped_type = typename Policy::mapped_type;
using value_type = typename Base::value_type;
template <class K>
using key_arg = typename KeyArgImpl::template type<K, key_type>;
static_assert(!std::is_reference<key_type>::value, "");
// TODO(alkis): remove this assertion and verify that reference mapped_type is
// supported.
static_assert(!std::is_reference<mapped_type>::value, "");
using iterator = typename parallel_hash_map::parallel_hash_set::iterator;
using const_iterator = typename parallel_hash_map::parallel_hash_set::const_iterator;
parallel_hash_map() {}
#ifdef __INTEL_COMPILER
using Base::parallel_hash_set;
#else
using parallel_hash_map::parallel_hash_set::parallel_hash_set;
#endif
// The last two template parameters ensure that both arguments are rvalues
// (lvalue arguments are handled by the overloads below). This is necessary
// for supporting bitfield arguments.
//
// union { int n : 1; };
// flat_hash_map<int, int> m;
// m.insert_or_assign(n, n);
template <class K = key_type, class V = mapped_type, K* = nullptr,
V* = nullptr>
std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, V&& v) {
return insert_or_assign_impl(std::forward<K>(k), std::forward<V>(v));
}
template <class K = key_type, class V = mapped_type, K* = nullptr>
std::pair<iterator, bool> insert_or_assign(key_arg<K>&& k, const V& v) {
return insert_or_assign_impl(std::forward<K>(k), v);
}
template <class K = key_type, class V = mapped_type, V* = nullptr>
std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, V&& v) {
return insert_or_assign_impl(k, std::forward<V>(v));
}
template <class K = key_type, class V = mapped_type>
std::pair<iterator, bool> insert_or_assign(const key_arg<K>& k, const V& v) {
return insert_or_assign_impl(k, v);
}
template <class K = key_type, class V = mapped_type, K* = nullptr,
V* = nullptr>
iterator insert_or_assign(const_iterator, key_arg<K>&& k, V&& v) {
return insert_or_assign(std::forward<K>(k), std::forward<V>(v)).first;
}
template <class K = key_type, class V = mapped_type, K* = nullptr>
iterator insert_or_assign(const_iterator, key_arg<K>&& k, const V& v) {
return insert_or_assign(std::forward<K>(k), v).first;
}
template <class K = key_type, class V = mapped_type, V* = nullptr>
iterator insert_or_assign(const_iterator, const key_arg<K>& k, V&& v) {
return insert_or_assign(k, std::forward<V>(v)).first;
}
template <class K = key_type, class V = mapped_type>
iterator insert_or_assign(const_iterator, const key_arg<K>& k, const V& v) {
return insert_or_assign(k, v).first;
}
template <class K = key_type, class... Args,
typename std::enable_if<
!std::is_convertible<K, const_iterator>::value, int>::type = 0,
K* = nullptr>
std::pair<iterator, bool> try_emplace(key_arg<K>&& k, Args&&... args) {
return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...);
}
template <class K = key_type, class... Args,
typename std::enable_if<
!std::is_convertible<K, const_iterator>::value, int>::type = 0>
std::pair<iterator, bool> try_emplace(const key_arg<K>& k, Args&&... args) {
return try_emplace_impl(k, std::forward<Args>(args)...);
}
template <class K = key_type, class... Args, K* = nullptr>
iterator try_emplace(const_iterator, key_arg<K>&& k, Args&&... args) {
return try_emplace(std::forward<K>(k), std::forward<Args>(args)...).first;
}
template <class K = key_type, class... Args>
iterator try_emplace(const_iterator, const key_arg<K>& k, Args&&... args) {
return try_emplace(k, std::forward<Args>(args)...).first;
}
template <class K = key_type, class P = Policy>
MappedReference<P> at(const key_arg<K>& key) {
auto it = this->find(key);
if (it == this->end())
phmap::base_internal::ThrowStdOutOfRange("phmap at(): lookup non-existent key");
return Policy::value(&*it);
}
template <class K = key_type, class P = Policy>
MappedConstReference<P> at(const key_arg<K>& key) const {
auto it = this->find(key);
if (it == this->end())
phmap::base_internal::ThrowStdOutOfRange("phmap at(): lookup non-existent key");
return Policy::value(&*it);
}
// ----------- phmap extensions --------------------------
template <class K = key_type, class... Args,
typename std::enable_if<
!std::is_convertible<K, const_iterator>::value, int>::type = 0,
K* = nullptr>
std::pair<iterator, bool> try_emplace_with_hash(size_t hashval, key_arg<K>&& k, Args&&... args) {
return try_emplace_impl_with_hash(hashval, std::forward<K>(k), std::forward<Args>(args)...);
}
template <class K = key_type, class... Args,
typename std::enable_if<
!std::is_convertible<K, const_iterator>::value, int>::type = 0>
std::pair<iterator, bool> try_emplace_with_hash(size_t hashval, const key_arg<K>& k, Args&&... args) {
return try_emplace_impl_with_hash(hashval, k, std::forward<Args>(args)...);
}
template <class K = key_type, class... Args, K* = nullptr>
iterator try_emplace_with_hash(size_t hashval, const_iterator, key_arg<K>&& k, Args&&... args) {
return try_emplace_with_hash(hashval, std::forward<K>(k), std::forward<Args>(args)...).first;
}
template <class K = key_type, class... Args>
iterator try_emplace_with_hash(size_t hashval, const_iterator, const key_arg<K>& k, Args&&... args) {
return try_emplace_with_hash(hashval, k, std::forward<Args>(args)...).first;
}
// if map does not contains key, it is inserted and the mapped value is value-constructed
// with the provided arguments (if any), as with try_emplace.
// if map already contains key, then the lambda is called with the mapped value (under
// write lock protection) and can update the mapped value.
// returns true if key was not already present, false otherwise.
// ---------------------------------------------------------------------------------------
template <class K = key_type, class F, class... Args>
bool try_emplace_l(K&& k, F&& f, Args&&... args) {
size_t hashval = this->hash(k);
ReadWriteLock m;
auto res = this->find_or_prepare_insert_with_hash(hashval, k, m);
typename Base::Inner *inner = std::get<0>(res);
if (std::get<2>(res)) {
inner->set_.emplace_at(std::get<1>(res), std::piecewise_construct,
std::forward_as_tuple(std::forward<K>(k)),
std::forward_as_tuple(std::forward<Args>(args)...));
inner->set_.set_ctrl(std::get<1>(res), H2(hashval));
} else {
auto it = this->iterator_at(inner, inner->set_.iterator_at(std::get<1>(res)));
// call lambda. in case of the set, non "key" part of value_type can be changed
std::forward<F>(f)(const_cast<value_type &>(*it));
}
return std::get<2>(res);
}
// returns {pointer, bool} instead of {iterator, bool} per try_emplace.
// useful for node-based containers, since the pointer is not invalidated by concurrent insert etc.
template <class K = key_type, class... Args>
std::pair<typename parallel_hash_map::parallel_hash_set::pointer, bool> try_emplace_p(K&& k, Args&&... args) {
size_t hashval = this->hash(k);
ReadWriteLock m;
auto res = this->find_or_prepare_insert_with_hash(hashval, k, m);
typename Base::Inner *inner = std::get<0>(res);
if (std::get<2>(res)) {
inner->set_.emplace_at(std::get<1>(res), std::piecewise_construct,
std::forward_as_tuple(std::forward<K>(k)),
std::forward_as_tuple(std::forward<Args>(args)...));
inner->set_.set_ctrl(std::get<1>(res), H2(hashval));
}
auto it = this->iterator_at(inner, inner->set_.iterator_at(std::get<1>(res)));
return {&*it, std::get<2>(res)};
}
// ----------- end of phmap extensions --------------------------
template <class K = key_type, class P = Policy, K* = nullptr>
MappedReference<P> operator[](key_arg<K>&& key) {
return Policy::value(&*try_emplace(std::forward<K>(key)).first);
}
template <class K = key_type, class P = Policy>
MappedReference<P> operator[](const key_arg<K>& key) {
return Policy::value(&*try_emplace(key).first);
}
private:
template <class K, class V>
std::pair<iterator, bool> insert_or_assign_impl(K&& k, V&& v) {
size_t hashval = this->hash(k);
ReadWriteLock m;
auto res = this->find_or_prepare_insert_with_hash(hashval, k, m);
typename Base::Inner *inner = std::get<0>(res);
if (std::get<2>(res)) {
inner->set_.emplace_at(std::get<1>(res), std::forward<K>(k), std::forward<V>(v));
inner->set_.set_ctrl(std::get<1>(res), H2(hashval));
} else
Policy::value(&*inner->set_.iterator_at(std::get<1>(res))) = std::forward<V>(v);
return {this->iterator_at(inner, inner->set_.iterator_at(std::get<1>(res))),
std::get<2>(res)};
}
template <class K = key_type, class... Args>
std::pair<iterator, bool> try_emplace_impl(K&& k, Args&&... args) {
return try_emplace_impl_with_hash(this->hash(k), std::forward<K>(k),
std::forward<Args>(args)...);
}
template <class K = key_type, class... Args>
std::pair<iterator, bool> try_emplace_impl_with_hash(size_t hashval, K&& k, Args&&... args) {
ReadWriteLock m;
auto res = this->find_or_prepare_insert_with_hash(hashval, k, m);
typename Base::Inner *inner = std::get<0>(res);
if (std::get<2>(res)) {
inner->set_.emplace_at(std::get<1>(res), std::piecewise_construct,
std::forward_as_tuple(std::forward<K>(k)),
std::forward_as_tuple(std::forward<Args>(args)...));
inner->set_.set_ctrl(std::get<1>(res), H2(hashval));
}
return {this->iterator_at(inner, inner->set_.iterator_at(std::get<1>(res))),
std::get<2>(res)};
}
};
// Constructs T into uninitialized storage pointed by `ptr` using the args
// specified in the tuple.
// ----------------------------------------------------------------------------
template <class Alloc, class T, class Tuple>
void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {
memory_internal::ConstructFromTupleImpl(
alloc, ptr, std::forward<Tuple>(t),
phmap::make_index_sequence<
std::tuple_size<typename std::decay<Tuple>::type>::value>());
}
// Constructs T using the args specified in the tuple and calls F with the
// constructed value.
// ----------------------------------------------------------------------------
template <class T, class Tuple, class F>
decltype(std::declval<F>()(std::declval<T>())) WithConstructed(
Tuple&& t, F&& f) {
return memory_internal::WithConstructedImpl<T>(
std::forward<Tuple>(t),
phmap::make_index_sequence<
std::tuple_size<typename std::decay<Tuple>::type>::value>(),
std::forward<F>(f));
}
// ----------------------------------------------------------------------------
// Given arguments of an std::pair's consructor, PairArgs() returns a pair of
// tuples with references to the passed arguments. The tuples contain
// constructor arguments for the first and the second elements of the pair.
//
// The following two snippets are equivalent.
//
// 1. std::pair<F, S> p(args...);
//
// 2. auto a = PairArgs(args...);
// std::pair<F, S> p(std::piecewise_construct,
// std::move(p.first), std::move(p.second));
// ----------------------------------------------------------------------------
inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }
template <class F, class S>
std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {
return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),
std::forward_as_tuple(std::forward<S>(s))};
}
template <class F, class S>
std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(
const std::pair<F, S>& p) {
return PairArgs(p.first, p.second);
}
template <class F, class S>
std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {
return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));
}
template <class F, class S>
auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)
-> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
memory_internal::TupleRef(std::forward<S>(s)))) {
return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
memory_internal::TupleRef(std::forward<S>(s)));
}
// A helper function for implementing apply() in map policies.
// ----------------------------------------------------------------------------
template <class F, class... Args>
auto DecomposePair(F&& f, Args&&... args)
-> decltype(memory_internal::DecomposePairImpl(
std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {
return memory_internal::DecomposePairImpl(
std::forward<F>(f), PairArgs(std::forward<Args>(args)...));
}
// A helper function for implementing apply() in set policies.
// ----------------------------------------------------------------------------
template <class F, class Arg>
decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))
DecomposeValue(F&& f, Arg&& arg) {
const auto& key = arg;
return std::forward<F>(f)(key, std::forward<Arg>(arg));
}
// --------------------------------------------------------------------------
// Policy: a policy defines how to perform different operations on
// the slots of the hashtable (see hash_policy_traits.h for the full interface
// of policy).
//
// Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The
// functor should accept a key and return size_t as hash. For best performance
// it is important that the hash function provides high entropy across all bits
// of the hash.
//
// Eq: a (possibly polymorphic) functor that compares two keys for equality. It
// should accept two (of possibly different type) keys and return a bool: true
// if they are equal, false if they are not. If two keys compare equal, then
// their hash values as defined by Hash MUST be equal.
//
// Allocator: an Allocator [https://devdocs.io/cpp/concept/allocator] with which
// the storage of the hashtable will be allocated and the elements will be
// constructed and destroyed.
// --------------------------------------------------------------------------
template <class T>
struct FlatHashSetPolicy
{
using slot_type = T;
using key_type = T;
using init_type = T;
using constant_iterators = std::true_type;
using is_flat = std::true_type;
template <class Allocator, class... Args>
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
phmap::allocator_traits<Allocator>::construct(*alloc, slot,
std::forward<Args>(args)...);
}
template <class Allocator>
static void destroy(Allocator* alloc, slot_type* slot) {
phmap::allocator_traits<Allocator>::destroy(*alloc, slot);
}
template <class Allocator>
static void transfer(Allocator* alloc, slot_type* new_slot,
slot_type* old_slot) {
construct(alloc, new_slot, std::move(*old_slot));
destroy(alloc, old_slot);
}
static T& element(slot_type* slot) { return *slot; }
template <class F, class... Args>
static decltype(phmap::priv::DecomposeValue(
std::declval<F>(), std::declval<Args>()...))
apply(F&& f, Args&&... args) {
return phmap::priv::DecomposeValue(
std::forward<F>(f), std::forward<Args>(args)...);
}
static size_t space_used(const T*) { return 0; }
};
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
template <class K, class V>
struct FlatHashMapPolicy
{
using slot_policy = priv::map_slot_policy<K, V>;
using slot_type = typename slot_policy::slot_type;
using key_type = K;
using mapped_type = V;
using init_type = std::pair</*non const*/ key_type, mapped_type>;
using is_flat = std::true_type;
template <class Allocator, class... Args>
static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
}
template <class Allocator>
static void destroy(Allocator* alloc, slot_type* slot) {
slot_policy::destroy(alloc, slot);
}
template <class Allocator>
static void transfer(Allocator* alloc, slot_type* new_slot,
slot_type* old_slot) {
slot_policy::transfer(alloc, new_slot, old_slot);
}
template <class F, class... Args>
static decltype(phmap::priv::DecomposePair(
std::declval<F>(), std::declval<Args>()...))
apply(F&& f, Args&&... args) {
return phmap::priv::DecomposePair(std::forward<F>(f),
std::forward<Args>(args)...);
}
static size_t space_used(const slot_type*) { return 0; }
static std::pair<const K, V>& element(slot_type* slot) { return slot->value; }
static V& value(std::pair<const K, V>* kv) { return kv->second; }
static const V& value(const std::pair<const K, V>* kv) { return kv->second; }
};
template <class Reference, class Policy>
struct node_hash_policy {
static_assert(std::is_lvalue_reference<Reference>::value, "");
using slot_type = typename std::remove_cv<
typename std::remove_reference<Reference>::type>::type*;
template <class Alloc, class... Args>
static void construct(Alloc* alloc, slot_type* slot, Args&&... args) {
*slot = Policy::new_element(alloc, std::forward<Args>(args)...);
}
template <class Alloc>
static void destroy(Alloc* alloc, slot_type* slot) {
Policy::delete_element(alloc, *slot);
}
template <class Alloc>
static void transfer(Alloc*, slot_type* new_slot, slot_type* old_slot) {
*new_slot = *old_slot;
}
static size_t space_used(const slot_type* slot) {
if (slot == nullptr) return Policy::element_space_used(nullptr);
return Policy::element_space_used(*slot);
}
static Reference element(slot_type* slot) { return **slot; }
template <class T, class P = Policy>
static auto value(T* elem) -> decltype(P::value(elem)) {
return P::value(elem);
}
template <class... Ts, class P = Policy>
static auto apply(Ts&&... ts) -> decltype(P::apply(std::forward<Ts>(ts)...)) {
return P::apply(std::forward<Ts>(ts)...);
}
};
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
template <class T>
struct NodeHashSetPolicy
: phmap::priv::node_hash_policy<T&, NodeHashSetPolicy<T>>
{
using key_type = T;
using init_type = T;
using constant_iterators = std::true_type;
using is_flat = std::false_type;
template <class Allocator, class... Args>
static T* new_element(Allocator* alloc, Args&&... args) {
using ValueAlloc =
typename phmap::allocator_traits<Allocator>::template rebind_alloc<T>;
ValueAlloc value_alloc(*alloc);
T* res = phmap::allocator_traits<ValueAlloc>::allocate(value_alloc, 1);
phmap::allocator_traits<ValueAlloc>::construct(value_alloc, res,
std::forward<Args>(args)...);
return res;
}
template <class Allocator>
static void delete_element(Allocator* alloc, T* elem) {
using ValueAlloc =
typename phmap::allocator_traits<Allocator>::template rebind_alloc<T>;
ValueAlloc value_alloc(*alloc);
phmap::allocator_traits<ValueAlloc>::destroy(value_alloc, elem);
phmap::allocator_traits<ValueAlloc>::deallocate(value_alloc, elem, 1);
}
template <class F, class... Args>
static decltype(phmap::priv::DecomposeValue(
std::declval<F>(), std::declval<Args>()...))
apply(F&& f, Args&&... args) {
return phmap::priv::DecomposeValue(
std::forward<F>(f), std::forward<Args>(args)...);
}
static size_t element_space_used(const T*) { return sizeof(T); }
};
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
template <class Key, class Value>
class NodeHashMapPolicy
: public phmap::priv::node_hash_policy<
std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>>
{
using value_type = std::pair<const Key, Value>;
public:
using key_type = Key;
using mapped_type = Value;
using init_type = std::pair</*non const*/ key_type, mapped_type>;
using is_flat = std::false_type;
template <class Allocator, class... Args>
static value_type* new_element(Allocator* alloc, Args&&... args) {
using PairAlloc = typename phmap::allocator_traits<
Allocator>::template rebind_alloc<value_type>;
PairAlloc pair_alloc(*alloc);
value_type* res =
phmap::allocator_traits<PairAlloc>::allocate(pair_alloc, 1);
phmap::allocator_traits<PairAlloc>::construct(pair_alloc, res,
std::forward<Args>(args)...);
return res;
}
template <class Allocator>
static void delete_element(Allocator* alloc, value_type* pair) {
using PairAlloc = typename phmap::allocator_traits<
Allocator>::template rebind_alloc<value_type>;
PairAlloc pair_alloc(*alloc);
phmap::allocator_traits<PairAlloc>::destroy(pair_alloc, pair);
phmap::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1);
}
template <class F, class... Args>
static decltype(phmap::priv::DecomposePair(
std::declval<F>(), std::declval<Args>()...))
apply(F&& f, Args&&... args) {
return phmap::priv::DecomposePair(std::forward<F>(f),
std::forward<Args>(args)...);
}
static size_t element_space_used(const value_type*) {
return sizeof(value_type);
}
static Value& value(value_type* elem) { return elem->second; }
static const Value& value(const value_type* elem) { return elem->second; }
};
// --------------------------------------------------------------------------
// hash_default
// --------------------------------------------------------------------------
#if PHMAP_HAVE_STD_STRING_VIEW
// Supports heterogeneous lookup for basic_string<T>-like elements.
template<class CharT>
struct StringHashEqT
{
struct Hash
{
using is_transparent = void;
size_t operator()(std::basic_string_view<CharT> v) const {
std::string_view bv{
reinterpret_cast<const char*>(v.data()), v.size() * sizeof(CharT)};
return std::hash<std::string_view>()(bv);
}
};
struct Eq {
using is_transparent = void;
bool operator()(std::basic_string_view<CharT> lhs,
std::basic_string_view<CharT> rhs) const {
return lhs == rhs;
}
};
};
template <>
struct HashEq<std::string> : StringHashEqT<char> {};
template <>
struct HashEq<std::string_view> : StringHashEqT<char> {};
// char16_t
template <>
struct HashEq<std::u16string> : StringHashEqT<char16_t> {};
template <>
struct HashEq<std::u16string_view> : StringHashEqT<char16_t> {};
// wchar_t
template <>
struct HashEq<std::wstring> : StringHashEqT<wchar_t> {};
template <>
struct HashEq<std::wstring_view> : StringHashEqT<wchar_t> {};
#endif
// Supports heterogeneous lookup for pointers and smart pointers.
// -------------------------------------------------------------
template <class T>
struct HashEq<T*>
{
struct Hash {
using is_transparent = void;
template <class U>
size_t operator()(const U& ptr) const {
// we want phmap::Hash<T*> and not phmap::Hash<const T*>
// so "struct std::hash<T*> " override works
return phmap::Hash<T*>{}((T*)(uintptr_t)HashEq::ToPtr(ptr));
}
};
struct Eq {
using is_transparent = void;
template <class A, class B>
bool operator()(const A& a, const B& b) const {
return HashEq::ToPtr(a) == HashEq::ToPtr(b);
}
};
private:
static const T* ToPtr(const T* ptr) { return ptr; }
template <class U, class D>
static const T* ToPtr(const std::unique_ptr<U, D>& ptr) {
return ptr.get();
}
template <class U>
static const T* ToPtr(const std::shared_ptr<U>& ptr) {
return ptr.get();
}
};
template <class T, class D>
struct HashEq<std::unique_ptr<T, D>> : HashEq<T*> {};
template <class T>
struct HashEq<std::shared_ptr<T>> : HashEq<T*> {};
namespace hashtable_debug_internal {
// --------------------------------------------------------------------------
// --------------------------------------------------------------------------
template<typename, typename = void >
struct has_member_type_raw_hash_set : std::false_type
{};
template<typename T>
struct has_member_type_raw_hash_set<T, phmap::void_t<typename T::raw_hash_set>> : std::true_type
{};
template <typename Set>
struct HashtableDebugAccess<Set, typename std::enable_if<has_member_type_raw_hash_set<Set>::value>::type>
{
using Traits = typename Set::PolicyTraits;
using Slot = typename Traits::slot_type;
static size_t GetNumProbes(const Set& set,
const typename Set::key_type& key) {
size_t num_probes = 0;
size_t hashval = set.hash(key);
auto seq = set.probe(hashval);
while (true) {
priv::Group g{set.ctrl_ + seq.offset()};
for (uint32_t i : g.Match((h2_t)priv::H2(hashval))) {
if (Traits::apply(
typename Set::template EqualElement<typename Set::key_type>{
key, set.eq_ref()},
Traits::element(set.slots_ + seq.offset((size_t)i))))
return num_probes;
++num_probes;
}
if (g.MatchEmpty()) return num_probes;
seq.next();
++num_probes;
}
}
static size_t AllocatedByteSize(const Set& c) {
size_t capacity = c.capacity_;
if (capacity == 0) return 0;
auto layout = Set::MakeLayout(capacity);
size_t m = layout.AllocSize();
size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
if (per_slot != ~size_t{}) {
m += per_slot * c.size();
} else {
for (size_t i = 0; i != capacity; ++i) {
if (priv::IsFull(c.ctrl_[i])) {
m += Traits::space_used(c.slots_ + i);
}
}
}
return m;
}
static size_t LowerBoundAllocatedByteSize(size_t size) {
size_t capacity = GrowthToLowerboundCapacity(size);
if (capacity == 0) return 0;
auto layout = Set::MakeLayout(NormalizeCapacity(capacity));
size_t m = layout.AllocSize();
size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
if (per_slot != ~size_t{}) {
m += per_slot * size;
}
return m;
}
};
template<typename, typename = void >
struct has_member_type_EmbeddedSet : std::false_type
{};
template<typename T>
struct has_member_type_EmbeddedSet<T, phmap::void_t<typename T::EmbeddedSet>> : std::true_type
{};
template <typename Set>
struct HashtableDebugAccess<Set, typename std::enable_if<has_member_type_EmbeddedSet<Set>::value>::type> {
using Traits = typename Set::PolicyTraits;
using Slot = typename Traits::slot_type;
using EmbeddedSet = typename Set::EmbeddedSet;
static size_t GetNumProbes(const Set& set, const typename Set::key_type& key) {
size_t hashval = set.hash(key);
auto& inner = set.sets_[set.subidx(hashval)];
auto& inner_set = inner.set_;
return HashtableDebugAccess<EmbeddedSet>::GetNumProbes(inner_set, key);
}
};
} // namespace hashtable_debug_internal
} // namespace priv
// -----------------------------------------------------------------------------
// phmap::flat_hash_set
// -----------------------------------------------------------------------------
// An `phmap::flat_hash_set<T>` is an unordered associative container which has
// been optimized for both speed and memory footprint in most common use cases.
// Its interface is similar to that of `std::unordered_set<T>` with the
// following notable differences:
//
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
// `insert()`, provided that the set is provided a compatible heterogeneous
// hashing function and equality operator.
// * Invalidates any references and pointers to elements within the table after
// `rehash()`.
// * Contains a `capacity()` member function indicating the number of element
// slots (open, deleted, and empty) within the hash set.
// * Returns `void` from the `_erase(iterator)` overload.
// -----------------------------------------------------------------------------
template <class T, class Hash, class Eq, class Alloc> // default values in phmap_fwd_decl.h
class flat_hash_set
: public phmap::priv::raw_hash_set<
phmap::priv::FlatHashSetPolicy<T>, Hash, Eq, Alloc>
{
using Base = typename flat_hash_set::raw_hash_set;
public:
flat_hash_set() {}
#ifdef __INTEL_COMPILER
using Base::raw_hash_set;
#else
using Base::Base;
#endif
using Base::begin;
using Base::cbegin;
using Base::cend;
using Base::end;
using Base::capacity;
using Base::empty;
using Base::max_size;
using Base::size;
using Base::clear; // may shrink - To avoid shrinking `erase(begin(), end())`
using Base::erase;
using Base::insert;
using Base::emplace;
using Base::emplace_hint;
using Base::extract;
using Base::merge;
using Base::swap;
using Base::rehash;
using Base::reserve;
using Base::contains;
using Base::count;
using Base::equal_range;
using Base::find;
using Base::bucket_count;
using Base::load_factor;
using Base::max_load_factor;
using Base::get_allocator;
using Base::hash_function;
using Base::hash;
using Base::key_eq;
};
// -----------------------------------------------------------------------------
// phmap::flat_hash_map
// -----------------------------------------------------------------------------
//
// An `phmap::flat_hash_map<K, V>` is an unordered associative container which
// has been optimized for both speed and memory footprint in most common use
// cases. Its interface is similar to that of `std::unordered_map<K, V>` with
// the following notable differences:
//
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
// `insert()`, provided that the map is provided a compatible heterogeneous
// hashing function and equality operator.
// * Invalidates any references and pointers to elements within the table after
// `rehash()`.
// * Contains a `capacity()` member function indicating the number of element
// slots (open, deleted, and empty) within the hash map.
// * Returns `void` from the `_erase(iterator)` overload.
// -----------------------------------------------------------------------------
template <class K, class V, class Hash, class Eq, class Alloc> // default values in phmap_fwd_decl.h
class flat_hash_map : public phmap::priv::raw_hash_map<
phmap::priv::FlatHashMapPolicy<K, V>,
Hash, Eq, Alloc> {
using Base = typename flat_hash_map::raw_hash_map;
public:
flat_hash_map() {}
#ifdef __INTEL_COMPILER
using Base::raw_hash_map;
#else
using Base::Base;
#endif
using Base::begin;
using Base::cbegin;
using Base::cend;
using Base::end;
using Base::capacity;
using Base::empty;
using Base::max_size;
using Base::size;
using Base::clear;
using Base::erase;
using Base::insert;
using Base::insert_or_assign;
using Base::emplace;
using Base::emplace_hint;
using Base::try_emplace;
using Base::extract;
using Base::merge;
using Base::swap;
using Base::rehash;
using Base::reserve;
using Base::at;
using Base::contains;
using Base::count;
using Base::equal_range;
using Base::find;
using Base::operator[];
using Base::bucket_count;
using Base::load_factor;
using Base::max_load_factor;
using Base::get_allocator;
using Base::hash_function;
using Base::hash;
using Base::key_eq;
};
// -----------------------------------------------------------------------------
// phmap::node_hash_set
// -----------------------------------------------------------------------------
// An `phmap::node_hash_set<T>` is an unordered associative container which
// has been optimized for both speed and memory footprint in most common use
// cases. Its interface is similar to that of `std::unordered_set<T>` with the
// following notable differences:
//
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
// `insert()`, provided that the map is provided a compatible heterogeneous
// hashing function and equality operator.
// * Contains a `capacity()` member function indicating the number of element
// slots (open, deleted, and empty) within the hash set.
// * Returns `void` from the `_erase(iterator)` overload.
// -----------------------------------------------------------------------------
template <class T, class Hash, class Eq, class Alloc> // default values in phmap_fwd_decl.h
class node_hash_set
: public phmap::priv::raw_hash_set<
phmap::priv::NodeHashSetPolicy<T>, Hash, Eq, Alloc>
{
using Base = typename node_hash_set::raw_hash_set;
public:
node_hash_set() {}
#ifdef __INTEL_COMPILER
using Base::raw_hash_set;
#else
using Base::Base;
#endif
using Base::begin;
using Base::cbegin;
using Base::cend;
using Base::end;
using Base::capacity;
using Base::empty;
using Base::max_size;
using Base::size;
using Base::clear;
using Base::erase;
using Base::insert;
using Base::emplace;
using Base::emplace_hint;
using Base::emplace_with_hash;
using Base::emplace_hint_with_hash;
using Base::extract;
using Base::merge;
using Base::swap;
using Base::rehash;
using Base::reserve;
using Base::contains;
using Base::count;
using Base::equal_range;
using Base::find;
using Base::bucket_count;
using Base::load_factor;
using Base::max_load_factor;
using Base::get_allocator;
using Base::hash_function;
using Base::hash;
using Base::key_eq;
typename Base::hasher hash_funct() { return this->hash_function(); }
void resize(typename Base::size_type hint) { this->rehash(hint); }
};
// -----------------------------------------------------------------------------
// phmap::node_hash_map
// -----------------------------------------------------------------------------
//
// An `phmap::node_hash_map<K, V>` is an unordered associative container which
// has been optimized for both speed and memory footprint in most common use
// cases. Its interface is similar to that of `std::unordered_map<K, V>` with
// the following notable differences:
//
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and
// `insert()`, provided that the map is provided a compatible heterogeneous
// hashing function and equality operator.
// * Contains a `capacity()` member function indicating the number of element
// slots (open, deleted, and empty) within the hash map.
// * Returns `void` from the `_erase(iterator)` overload.
// -----------------------------------------------------------------------------
template <class Key, class Value, class Hash, class Eq, class Alloc> // default values in phmap_fwd_decl.h
class node_hash_map
: public phmap::priv::raw_hash_map<
phmap::priv::NodeHashMapPolicy<Key, Value>, Hash, Eq,
Alloc>
{
using Base = typename node_hash_map::raw_hash_map;
public:
node_hash_map() {}
#ifdef __INTEL_COMPILER
using Base::raw_hash_map;
#else
using Base::Base;
#endif
using Base::begin;
using Base::cbegin;
using Base::cend;
using Base::end;
using Base::capacity;
using Base::empty;
using Base::max_size;
using Base::size;
using Base::clear;
using Base::erase;
using Base::insert;
using Base::insert_or_assign;
using Base::emplace;
using Base::emplace_hint;
using Base::try_emplace;
using Base::extract;
using Base::merge;
using Base::swap;
using Base::rehash;
using Base::reserve;
using Base::at;
using Base::contains;
using Base::count;
using Base::equal_range;
using Base::find;
using Base::operator[];
using Base::bucket_count;
using Base::load_factor;
using Base::max_load_factor;
using Base::get_allocator;
using Base::hash_function;
using Base::hash;
using Base::key_eq;
typename Base::hasher hash_funct() { return this->hash_function(); }
void resize(typename Base::size_type hint) { this->rehash(hint); }
};
// -----------------------------------------------------------------------------
// phmap::parallel_flat_hash_set
// -----------------------------------------------------------------------------
template <class T, class Hash, class Eq, class Alloc, size_t N, class Mtx_> // default values in phmap_fwd_decl.h
class parallel_flat_hash_set
: public phmap::priv::parallel_hash_set<
N, phmap::priv::raw_hash_set, Mtx_,
phmap::priv::FlatHashSetPolicy<T>,
Hash, Eq, Alloc>
{
using Base = typename parallel_flat_hash_set::parallel_hash_set;
public:
parallel_flat_hash_set() {}
#ifdef __INTEL_COMPILER
using Base::parallel_hash_set;
#else
using Base::Base;
#endif
using Base::hash;
using Base::subidx;
using Base::subcnt;
using Base::begin;
using Base::cbegin;
using Base::cend;
using Base::end;
using Base::capacity;
using Base::empty;
using Base::max_size;
using Base::size;
using Base::clear;
using Base::erase;
using Base::insert;
using Base::emplace;
using Base::emplace_hint;
using Base::emplace_with_hash;
using Base::emplace_hint_with_hash;
using Base::extract;
using Base::merge;
using Base::swap;
using Base::rehash;
using Base::reserve;
using Base::contains;
using Base::count;
using Base::equal_range;
using Base::find;
using Base::bucket_count;
using Base::load_factor;
using Base::max_load_factor;
using Base::get_allocator;
using Base::hash_function;
using Base::key_eq;
};
// -----------------------------------------------------------------------------
// phmap::parallel_flat_hash_map - default values in phmap_fwd_decl.h
// -----------------------------------------------------------------------------
template <class K, class V, class Hash, class Eq, class Alloc, size_t N, class Mtx_>
class parallel_flat_hash_map : public phmap::priv::parallel_hash_map<
N, phmap::priv::raw_hash_set, Mtx_,
phmap::priv::FlatHashMapPolicy<K, V>,
Hash, Eq, Alloc>
{
using Base = typename parallel_flat_hash_map::parallel_hash_map;
public:
parallel_flat_hash_map() {}
#ifdef __INTEL_COMPILER
using Base::parallel_hash_map;
#else
using Base::Base;
#endif
using Base::hash;
using Base::subidx;
using Base::subcnt;
using Base::begin;
using Base::cbegin;
using Base::cend;
using Base::end;
using Base::capacity;
using Base::empty;
using Base::max_size;
using Base::size;
using Base::clear;
using Base::erase;
using Base::insert;
using Base::insert_or_assign;
using Base::emplace;
using Base::emplace_hint;
using Base::try_emplace;
using Base::emplace_with_hash;
using Base::emplace_hint_with_hash;
using Base::try_emplace_with_hash;
using Base::extract;
using Base::merge;
using Base::swap;
using Base::rehash;
using Base::reserve;
using Base::at;
using Base::contains;
using Base::count;
using Base::equal_range;
using Base::find;
using Base::operator[];
using Base::bucket_count;
using Base::load_factor;
using Base::max_load_factor;
using Base::get_allocator;
using Base::hash_function;
using Base::key_eq;
};
// -----------------------------------------------------------------------------
// phmap::parallel_node_hash_set
// -----------------------------------------------------------------------------
template <class T, class Hash, class Eq, class Alloc, size_t N, class Mtx_>
class parallel_node_hash_set
: public phmap::priv::parallel_hash_set<
N, phmap::priv::raw_hash_set, Mtx_,
phmap::priv::NodeHashSetPolicy<T>, Hash, Eq, Alloc>
{
using Base = typename parallel_node_hash_set::parallel_hash_set;
public:
parallel_node_hash_set() {}
#ifdef __INTEL_COMPILER
using Base::parallel_hash_set;
#else
using Base::Base;
#endif
using Base::hash;
using Base::subidx;
using Base::subcnt;
using Base::begin;
using Base::cbegin;
using Base::cend;
using Base::end;
using Base::capacity;
using Base::empty;
using Base::max_size;
using Base::size;
using Base::clear;
using Base::erase;
using Base::insert;
using Base::emplace;
using Base::emplace_hint;
using Base::emplace_with_hash;
using Base::emplace_hint_with_hash;
using Base::extract;
using Base::merge;
using Base::swap;
using Base::rehash;
using Base::reserve;
using Base::contains;
using Base::count;
using Base::equal_range;
using Base::find;
using Base::bucket_count;
using Base::load_factor;
using Base::max_load_factor;
using Base::get_allocator;
using Base::hash_function;
using Base::key_eq;
typename Base::hasher hash_funct() { return this->hash_function(); }
void resize(typename Base::size_type hint) { this->rehash(hint); }
};
// -----------------------------------------------------------------------------
// phmap::parallel_node_hash_map
// -----------------------------------------------------------------------------
template <class Key, class Value, class Hash, class Eq, class Alloc, size_t N, class Mtx_>
class parallel_node_hash_map
: public phmap::priv::parallel_hash_map<
N, phmap::priv::raw_hash_set, Mtx_,
phmap::priv::NodeHashMapPolicy<Key, Value>, Hash, Eq,
Alloc>
{
using Base = typename parallel_node_hash_map::parallel_hash_map;
public:
parallel_node_hash_map() {}
#ifdef __INTEL_COMPILER
using Base::parallel_hash_map;
#else
using Base::Base;
#endif
using Base::hash;
using Base::subidx;
using Base::subcnt;
using Base::begin;
using Base::cbegin;
using Base::cend;
using Base::end;
using Base::capacity;
using Base::empty;
using Base::max_size;
using Base::size;
using Base::clear;
using Base::erase;
using Base::insert;
using Base::insert_or_assign;
using Base::emplace;
using Base::emplace_hint;
using Base::try_emplace;
using Base::emplace_with_hash;
using Base::emplace_hint_with_hash;
using Base::try_emplace_with_hash;
using Base::extract;
using Base::merge;
using Base::swap;
using Base::rehash;
using Base::reserve;
using Base::at;
using Base::contains;
using Base::count;
using Base::equal_range;
using Base::find;
using Base::operator[];
using Base::bucket_count;
using Base::load_factor;
using Base::max_load_factor;
using Base::get_allocator;
using Base::hash_function;
using Base::key_eq;
typename Base::hasher hash_funct() { return this->hash_function(); }
void resize(typename Base::size_type hint) { this->rehash(hint); }
};
} // namespace phmap
namespace phmap {
namespace priv {
template <class C, class Pred>
std::size_t erase_if(C &c, Pred pred) {
auto old_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {
if (pred(*i)) {
i = c.erase(i);
} else {
++i;
}
}
return old_size - c.size();
}
} // priv
// ======== erase_if for phmap set containers ==================================
template <class T, class Hash, class Eq, class Alloc, class Pred>
std::size_t erase_if(phmap::flat_hash_set<T, Hash, Eq, Alloc>& c, Pred pred) {
return phmap::priv::erase_if(c, std::move(pred));
}
template <class T, class Hash, class Eq, class Alloc, class Pred>
std::size_t erase_if(phmap::node_hash_set<T, Hash, Eq, Alloc>& c, Pred pred) {
return phmap::priv::erase_if(c, std::move(pred));
}
template <class T, class Hash, class Eq, class Alloc, size_t N, class Mtx_, class Pred>
std::size_t erase_if(phmap::parallel_flat_hash_set<T, Hash, Eq, Alloc, N, Mtx_>& c, Pred pred) {
return phmap::priv::erase_if(c, std::move(pred));
}
template <class T, class Hash, class Eq, class Alloc, size_t N, class Mtx_, class Pred>
std::size_t erase_if(phmap::parallel_node_hash_set<T, Hash, Eq, Alloc, N, Mtx_>& c, Pred pred) {
return phmap::priv::erase_if(c, std::move(pred));
}
// ======== erase_if for phmap map containers ==================================
template <class K, class V, class Hash, class Eq, class Alloc, class Pred>
std::size_t erase_if(phmap::flat_hash_map<K, V, Hash, Eq, Alloc>& c, Pred pred) {
return phmap::priv::erase_if(c, std::move(pred));
}
template <class K, class V, class Hash, class Eq, class Alloc, class Pred>
std::size_t erase_if(phmap::node_hash_map<K, V, Hash, Eq, Alloc>& c, Pred pred) {
return phmap::priv::erase_if(c, std::move(pred));
}
template <class K, class V, class Hash, class Eq, class Alloc, size_t N, class Mtx_, class Pred>
std::size_t erase_if(phmap::parallel_flat_hash_map<K, V, Hash, Eq, Alloc, N, Mtx_>& c, Pred pred) {
return phmap::priv::erase_if(c, std::move(pred));
}
template <class K, class V, class Hash, class Eq, class Alloc, size_t N, class Mtx_, class Pred>
std::size_t erase_if(phmap::parallel_node_hash_map<K, V, Hash, Eq, Alloc, N, Mtx_>& c, Pred pred) {
return phmap::priv::erase_if(c, std::move(pred));
}
} // phmap
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // phmap_h_guard_