Endgame-Analyzer/include/hanabi_types.hpp

179 lines
5.2 KiB
C++
Raw Permalink Normal View History

#ifndef DYNAMIC_PROGRAM_HANABI_TYPES_H
#define DYNAMIC_PROGRAM_HANABI_TYPES_H
#include <cstdint>
#include <iosfwd>
#include <array>
#include <optional>
#include <boost/rational.hpp>
2023-11-16 16:20:04 +01:00
namespace Hanabi
{
using rank_t = std::uint8_t;
using suit_t = std::uint8_t;
using clue_t = boost::rational<uint16_t>;
using player_t = std::uint8_t;
using hand_index_t = std::uint8_t;
using probability_base_type = unsigned long;
using rational_probability = boost::rational<probability_base_type>;
/**
* Define macro
* NUSE_RATIONAL_PROBABILITIES
2023-11-16 16:29:41 +01:00
* to use floating-point arithmetic for the stored probabilities
* instead of rational representations
*/
#ifndef NUSE_RATIONAL_PROBABILITIES
using probability_t = boost::rational<probability_base_type>;
#else
using probability_t = double;
#endif
2023-11-16 16:20:04 +01:00
std::ostream & print_probability(std::ostream & os, const rational_probability & prob);
std::ostream & print_probability(std::ostream & os, double prob);
template<typename T>
2023-11-16 16:20:04 +01:00
std::ostream & print_probability(std::ostream & os, const std::optional<T> & prob);
/**
* We will generally assume that stacks are played from n to 0
* Playing a 0 will yield a clue
* Therefore, for the default hanabi, we will play 4,3,2,1,0 in that order
* on each stack. A stack with no cards played implicitly has value 5 on it
* This is just easier to implement, since then the remaining number of cards
* to be played is always the current number of the stack
*/
constexpr rank_t starting_card_rank = 5;
constexpr suit_t max_suit_index = 5;
constexpr size_t max_card_duplicity = 3;
2024-01-14 18:04:27 +01:00
const clue_t max_num_clues = 8;
constexpr hand_index_t invalid_hand_idx = std::numeric_limits<hand_index_t>::max();
// We might want to change these at runtime to adapt to other variants.
// However, a global variable is used so that we can have an output operator for cards reading from here
// Note that this is therefore not static so that we have external linking
inline std::array<char, 6> suit_initials = {'r', 'y', 'g', 'b', 'p', 't'};
2023-11-16 16:20:04 +01:00
struct Card
{
suit_t suit;
rank_t rank;
// These attributes are not needed in general for a card,
// they represent internal states during backtracking.
uint8_t local_index;
bool in_starting_hand;
bool initial_trash;
/**
* @brief Compares cards *only* regarding suit and rank.
* This is inlined as this is a runtime critical function when backtracking.
*/
2023-11-16 16:20:04 +01:00
inline bool operator==(const Card & other) const;
2024-01-14 18:04:27 +01:00
inline bool operator!=(const Card & other) const;
};
2023-11-16 16:20:04 +01:00
enum class ActionType : std::uint8_t
{
play = 0
, discard = 1
, clue = 2
, color_clue = 2
, rank_clue = 3
, end_game = 4
, vote_terminate_players = 5
, vote_terminate = 10
, };
struct Action
{
ActionType type{};
Card card{};
};
// Output utilities for Cards and Actions
2023-11-16 16:20:04 +01:00
std::string to_string(const Card & card);
2023-11-16 16:20:04 +01:00
std::ostream & operator<<(std::ostream & os, const Card & card);
2023-11-16 16:20:04 +01:00
std::ostream & operator<<(std::ostream & os, const Action & action);
2023-11-24 16:11:36 +01:00
std::ostream & operator<<(std::ostream & os, const ActionType & action_type);
2023-11-16 16:20:04 +01:00
namespace Cards
{
static constexpr Card r0 = {0, 5};
static constexpr Card r1 = {0, 4};
static constexpr Card r2 = {0, 3};
static constexpr Card r3 = {0, 2};
static constexpr Card r4 = {0, 1};
static constexpr Card r5 = {0, 0};
static constexpr Card y0 = {1, 5};
static constexpr Card y1 = {1, 4};
static constexpr Card y2 = {1, 3};
static constexpr Card y3 = {1, 2};
static constexpr Card y4 = {1, 1};
static constexpr Card y5 = {1, 0};
static constexpr Card g0 = {2, 5};
static constexpr Card g1 = {2, 4};
static constexpr Card g2 = {2, 3};
static constexpr Card g3 = {2, 2};
static constexpr Card g4 = {2, 1};
static constexpr Card g5 = {2, 0};
static constexpr Card b0 = {3, 5};
static constexpr Card b1 = {3, 4};
static constexpr Card b2 = {3, 3};
static constexpr Card b3 = {3, 2};
static constexpr Card b4 = {3, 1};
static constexpr Card b5 = {3, 0};
static constexpr Card p0 = {4, 5};
static constexpr Card p1 = {4, 4};
static constexpr Card p2 = {4, 3};
static constexpr Card p3 = {4, 2};
static constexpr Card p4 = {4, 1};
static constexpr Card p5 = {4, 0};
static constexpr Card t0 = {5, 5};
static constexpr Card t1 = {5, 4};
static constexpr Card t2 = {5, 3};
static constexpr Card t3 = {5, 2};
static constexpr Card t4 = {5, 1};
static constexpr Card t5 = {5, 0};
static constexpr Card unknown = {std::numeric_limits<suit_t>::max(), 0};
static constexpr Card trash = {std::numeric_limits<suit_t>::max(), std::numeric_limits<rank_t>::max() };
}
//// INLINE SECTION
2023-11-16 16:20:04 +01:00
bool Card::operator==(const Card & other) const
{
return suit == other.suit and rank == other.rank;
}
2024-01-14 18:04:27 +01:00
bool Card::operator!=(const Card & other) const
{
return not (*this == other);
}
template<typename T>
2023-11-16 16:20:04 +01:00
std::ostream & print_probability(std::ostream & os, const std::optional<T> & prob)
{
if (prob.has_value())
{
return print_probability(os, prob.value());
2023-11-16 16:20:04 +01:00
}
else
{
os << "unknown";
}
return os;
}
} // namespace Hanabi
#endif //DYNAMIC_PROGRAM_HANABI_TYPES_H